Crushing Performance of Ultra-Lightweight Foam Concrete with Fine Particle Inclusions
Abstract
:Featured Application
Abstract
1. Introduction
2. Mixture Design and Sample Preparation
3. Testing methods
3.1. Measurement of Elastic Modulus Using a Vibrational Frequency Test
3.2. Measurement of Crushing Behavior Using a Penetration Test
3.3. Micro-CT
4. Results and discussion
4.1. Elastic Modulus of the Samples
4.2. Loading Behavior
4.3. Micro-CT Investigation on the Influence of Particle size
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.C.; Hossain, M.U.; Poon, C.S. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Constr. Build. Mater. 2017, 151, 441–448. [Google Scholar] [CrossRef]
- Manzi, S.; Mazzotti, C.; Bignozzi, M.C. Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Compos. 2013, 37, 312–318. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.K.; Brown, T.; Taylor, A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 2001, 31, 707–712. [Google Scholar] [CrossRef]
- Malešev, M.; Radonjanin, V.; Marinković, S. Recycled concrete as aggregate for structural concrete production. Sustainability 2010, 2, 1204–1225. [Google Scholar] [CrossRef]
- Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. Mechanical properties modeling of recycled aggregate concrete. Constr. Build. Mater. 2010, 24, 421–430. [Google Scholar] [CrossRef]
- Khatib, J.M. Properties of concrete incorporating fine recycled aggregate. Cem. Concr. Res. 2005, 35, 763–769. [Google Scholar] [CrossRef]
- Zega, C.J.; Di Maio, Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelista, L.; de Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef] [Green Version]
- ACI Committee. 229 Report on Controlled Low-Strength Materials; ACI Committee: Farmington Hills, MI, USA, 2013. [Google Scholar]
- ACI Committee. 523 Guide for Cellular Concretes above 50 lb/ft3 (800 kg/m3) (ACI 523.3R-93). In ACI Manual of Concrete Practice; ACI Committee: Farmington Hills, MI, USA, 2013; ISBN 9780870318856. [Google Scholar]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Behaviour and assessment of foamed concrete for construction applications. In Proceedings of the 2005 International Congress—Global Construction: Ultimate Concrete Opportunities, Dundee, UK, 5–7 July 2005. [Google Scholar]
- Wang, J.; Guo, W.; Zhao, R.; Shi, Y.; Zeng, L. Energy-absorbing properties and crushing flow stress equation of lightweight foamed concrete. J. Civ. Archit. Environ. Eng. 2013, 35, 96–102. [Google Scholar]
- Song, Y.; Lange, D. Crushing Behavior and Crushing Strengths of Low-Density Foam Concrete. Preprints 2019, 2019020208. [Google Scholar] [CrossRef]
- Wei, S.; Yunsheng, Z.; Jones, M.R. Using the ultrasonic wave transmission method to study the setting behavior of foamed concrete. Constr. Build. Mater. 2014, 51, 62–74. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Farzadnia, N.; Ali, A.A.A. Properties and applications of foamed concrete; A review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 2005, 57, 21–31. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Influence of filler type on the properties of foam concrete. Cem. Concr. Compos. 2006, 28, 475–480. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cem. Concr. Compos. 2006, 28, 752–760. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Zhao, X.; Ling, T.C. Strength and toughness of lightweight foamed concrete with different sand grading. KSCE J. Civ. Eng. 2014, 19, 2191–2197. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.R.; Ozlutas, K.; Zheng, L. Stability and instability of foamed concrete. Mag. Concr. Res. 2016, 68, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, S.; Ghorbani, S.; Tao, Z.; Brito, J.; Tavakkolizadeh, M. Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr. Build. Mater. 2019, 197, 280–290. [Google Scholar] [CrossRef]
- Onprom, P.; Chaimoon, K.; Cheerarot, R. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents. Adv. Mater. Sci. Eng. 2015, 2015, 381704. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel 2005, 84, 1398–1409. [Google Scholar] [CrossRef]
- She, W.; Du, Y.; Zhao, G.; Feng, P.; Zhang, Y.; Cao, X. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds. Constr. Build. Mater. 2018, 170, 153–166. [Google Scholar] [CrossRef]
- Jones, R.; Zheng, L.; Yerramala, A.; Rao, K.S. Use of recycled and secondary aggregates in foamed concretes. Mag. Concr. Res. 2012, 64, 513–525. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids; Cambridge University Press: Cambridge, UK, 1999; ISBN 9781139878326. [Google Scholar]
- Ashby, M.F.; Medalist, R.F.M. The mechanical properties of cellular solids. Metall. Trans. A 1983, 14, 1755–1769. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Air-void characterisation of foam concrete. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM C796—Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ASTM. ASTM 305. Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; Annu. B. ASTM Stand Standard; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Song, Y.; Lange, D.A. Measuring Young’s Modulus of Low-Density Foam Concrete Using Resonant Frequency. Preprints 2019, 2019020207. [Google Scholar] [CrossRef]
- Santagata, E.; Bassani, M.; Sacchi, E. Performance of new materials for aircraft arrestor beds. Transp. Res. Rec. 2010, 2177, 124–131. [Google Scholar] [CrossRef]
- Zhou, Q.; Mayer, R.R. Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing. J. Eng. Mater. Technol. 2002, 124, 412–420. [Google Scholar] [CrossRef]
- Ramamurty, U.; Kumaran, M.C. Mechanical property extraction through conical indentation of a closed-cell aluminum foam. Acta Mater. 2004, 52, 181–189. [Google Scholar] [CrossRef]
- Allen, A.J.; Thomas, J.J.; Jennings, H.M. Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat. Mater. 2007, 6, 311. [Google Scholar] [CrossRef] [PubMed]
Mixture | Sand Ratio | Sand Size [µm] | ρtarget [g/cm3] | ρfoamed paste [g/cm3] | ρmeasured [g/cm3] |
---|---|---|---|---|---|
Control | 0 | NA | 0.55 | 0.550 | 0.552 |
0.15_300 μm | 0.15 | 300 | 0.55 | 0.509 | 0.575 |
0.15_600 μm | 0.15 | 600 | 0.55 | 0.509 | 0.573 |
0.15_850 μm | 0.15 | 850 | 0.55 | 0.509 | 0.547 |
0.3_300 μm | 0.3 | 300 | 0.55 | 0.474 | 0.583 |
0.3_600 μm | 0.3 | 600 | 0.55 | 0.474 | 0.58 |
0.3_850 μm | 0.3 | 850 | 0.55 | 0.474 | 0.562 |
0.5_300 μm | 0.5 | 300 | 0.55 | 0.433 | 0.549 |
0.5_600 μm | 0.5 | 600 | 0.55 | 0.433 | 0.562 |
0.5_850 μm | 0.5 | 850 | 0.55 | 0.433 | 0.538 |
Sample | Mean of Elastic Modulus (and Standard Deviation) [MPa] | |||||
---|---|---|---|---|---|---|
7 Days | 14 Days | 21 Days | ||||
Control | 1176 | (31.1) | 1335 | (5.5) | 1365 | (18.5) |
0.15_300 μm | 1223 | (1.8) | 1361 | (26.0) | 1363 | (17.3) |
0.15_600 μm | 1245 | (35.8) | 1299 | (14.7) | 1332 | (23.4) |
0.15_850 μm | 997 | (30.2) | 1071 | (4.4) | 1126 | (7.2) |
0.3_300 μm | 1081 | (24.8) | 1166 | (23.1) | 1201 | (23.5) |
0.3_600 μm | 1076 | (20.6) | 1161 | (25.8) | 1202 | (34.6) |
0.3_850 μm | 975 | (29.4) | 1045 | (27.1) | 1072 | (28.8) |
0.5_300 μm | 888 | (20.1) | 922 | (24.3) | 931 | (15.8) |
0.5_600 μm | 762 | (42.9) | 821 | (43.4) | 855 | (33.8) |
0.5_850 μm | 662 | (49.1) | 709 | (8.9) | 719 | (16.1) |
Void Content [%] | Paste Content [%] | Sand Content [%] | ||||
---|---|---|---|---|---|---|
Sample | Calculated | Measured | Calculated | Measured | Calculated | Measured |
Control | 71.1 | 70.9 | 28.9 | - | 0.0 | - |
0.5_300 μm | 76.8 | 75.6 | 18.0 | 18.9 | 5.2 | 5.5 |
0.5_600 μm | 76.8 | 77.4 | 18.0 | 16.8 | 5.2 | 5.8 |
0.5_850 μm | 76.8 | 75.8 | 18.0 | 19.3 | 5.2 | 4.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Lange, D. Crushing Performance of Ultra-Lightweight Foam Concrete with Fine Particle Inclusions. Appl. Sci. 2019, 9, 876. https://doi.org/10.3390/app9050876
Song Y, Lange D. Crushing Performance of Ultra-Lightweight Foam Concrete with Fine Particle Inclusions. Applied Sciences. 2019; 9(5):876. https://doi.org/10.3390/app9050876
Chicago/Turabian StyleSong, Yu, and David Lange. 2019. "Crushing Performance of Ultra-Lightweight Foam Concrete with Fine Particle Inclusions" Applied Sciences 9, no. 5: 876. https://doi.org/10.3390/app9050876
APA StyleSong, Y., & Lange, D. (2019). Crushing Performance of Ultra-Lightweight Foam Concrete with Fine Particle Inclusions. Applied Sciences, 9(5), 876. https://doi.org/10.3390/app9050876