Polarimetry for Photonic Integrated Circuits
Abstract
:1. Introduction
2. Measurement Methodology
2.1. Setup Calibration
2.2. Device Measurement
2.3. Measurement Analysis
3. Results
3.1. Calibration Validation
3.2. PIC Characterization
3.2.1. Integrated Polarization Rotator
3.2.2. Electro-Absorption Modulator
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Müller Matrices
Appendix B. Polarimetric Measurement Equation
Appendix C. Setup Model Parameters
References
- Anderson, S.P.; Webster, M. Silicon Photonic Polarization-Multiplexing Nanotaper for Chip-to-Fiber Coupling. J. Light. Technol. 2016, 34, 372–378. [Google Scholar] [CrossRef]
- Augustin, L.M. Polarization Handling in Photonic Integrated Circuits; Technical University of Eindhoven: Eindhoven, The Netherlands, 2008. [Google Scholar]
- Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. [Google Scholar] [PubMed]
- Naeem, M.A.; Haji, M.; Holmes, B.M.; Hutchings, D.C.; Marsh, J.H.; Kelly, A.E. Generation of High Speed Polarization Modulated Data Using a Monolithically Integrated Device. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 207–211. [Google Scholar] [CrossRef]
- Dzibrou, D.O. Building Blocks for Control of Polarization in Photonic Integrated Circuits; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2014. [Google Scholar]
- Dzibrou, D.O.; Van Der Tol, J.J.G.M.; Smit, M.K. Extremely efficient two-section polarization converter for InGaAsP-InP photonic integrated circuits. In Proceedings of the Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, Munich, German, 12–16 May 2013; p. 1. [Google Scholar]
- Theurer, M.; Przyrembel, G.; Sigmund, A.; Molzow, W.-D.; Troppenz, U.; Möhrle, M. 56 Gb/s L-band InGaAlAs ridge waveguide electroabsorption modulated laser with integrated SOA. Phys. Status Solidi A 2016, 213, 970–974. [Google Scholar] [CrossRef]
- Walker, N.G.; Walker, G.R. Polarization control for coherent communications. J. Light. Technol. 1990, 8, 438–458. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. JOSA A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- SciPy.org—SciPy.org. Available online: https://www.scipy.org/ (accessed on 12 January 2018).
- Chipman, R.A. Polarimetry. In Handbook of Optics; Bass, M., Ed.; McGraw-Hill, Inc.: New York, NY, USA, 2010; Volume 1, ISBN 978-0-07-149889-0. [Google Scholar]
- Petersson, M.; Sunnerud, H.; Karlsson, M.; Olsson, B.E. Performance monitoring in optical networks using Stokes parameters. IEEE Photonics Technol. Lett. 2004, 16, 686–688. [Google Scholar] [CrossRef]
- Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-Performance InP PIC Technology Development based on a Generic Photonic Integration Foundry. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. 3. [Google Scholar]
- Soares, F.M.; Baier, M.; Gaertner, T.; Franke, D.; Moehrle, M.; Grote, N. Development of a versatile InP-based photonic platform based on Butt-Joint integration. In Proceedings of the 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Busan, Korea, 24–28 August 2015; Volume 2, pp. 1–2. [Google Scholar]
- Baier, M.; Soares, F.M.; Gaertner, T.; Schoenau, A.; Moehrle, M.; Schell, M. New Polarization Multiplexed Externally Modulated Laser PIC. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Baier, M.; Soares, F.M.; Gaertner, T.; Moehrle, M.; Schell, M. Fabrication Tolerant Integrated Polarization Rotator Design Using the Jones Calculus. J. Light. Technol. 2019, 37, 3106–3112. [Google Scholar] [CrossRef]
- Baier, M.; Soares, F.M.; Moehrle, M.; Grote, N.; Schell, M. A New Approach to Designing Polarization Rotating Waveguides; European Conference on Integrated Optics: Warsaw, Poland, 2016. [Google Scholar]
Parameter(s) | Occurs In | Description |
---|---|---|
, | before PC | SOP incident to the PC |
in PC | residual rotation LP diattenuation vector | |
in PC | residual rotation QWP retardation vector | |
in PC | residual rotation HWP retardation vector | |
, , | in PC | PDL of PC |
after input fiber | scalar loss | |
in input fiber | SMF model as in Equation (1) | |
in output fiber | SMF model as in Equation (1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baier, M.; Schoenau, A.; Soares, F.M.; Schell, M. Polarimetry for Photonic Integrated Circuits. Appl. Sci. 2019, 9, 2987. https://doi.org/10.3390/app9152987
Baier M, Schoenau A, Soares FM, Schell M. Polarimetry for Photonic Integrated Circuits. Applied Sciences. 2019; 9(15):2987. https://doi.org/10.3390/app9152987
Chicago/Turabian StyleBaier, Moritz, Axel Schoenau, Francisco M. Soares, and Martin Schell. 2019. "Polarimetry for Photonic Integrated Circuits" Applied Sciences 9, no. 15: 2987. https://doi.org/10.3390/app9152987
APA StyleBaier, M., Schoenau, A., Soares, F. M., & Schell, M. (2019). Polarimetry for Photonic Integrated Circuits. Applied Sciences, 9(15), 2987. https://doi.org/10.3390/app9152987