Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,290)

Search Parameters:
Keywords = optical polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8754 KB  
Review
Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems
by Muhammad A. Butt
Micromachines 2026, 17(1), 119; https://doi.org/10.3390/mi17010119 - 16 Jan 2026
Abstract
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical [...] Read more.
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical nonlinearities, while MSs provide versatile and compact control over phase, amplitude, polarization, and dispersion through planar, nanostructured interfaces. Recent advances in materials, nanofabrication, and device engineering are increasingly enabling these technologies to be combined within unified planar and hybrid optical platforms. This review surveys the physical principles, material strategies, and device architectures that underpin plasmonic, MS, and hybrid plasmonic–dielectric systems, with an emphasis on interface-mediated optical functionality rather than long-range guided-wave propagation. Key developments in modulators, detectors, nanolasers, metalenses, beam steering devices, and programmable optical surfaces are discussed, highlighting how hybrid designs can leverage strong field localization alongside low-loss wavefront control. System-level challenges including optical loss, thermal management, dispersion engineering, and large-area fabrication are critically examined. Looking forward, plasmonic and MS technologies are poised to define a new generation of flat, multifunctional, and programmable optical systems. Applications spanning imaging, sensing, communications, augmented and virtual reality, and optical information processing illustrate the transformative potential of these platforms. By consolidating recent progress and outlining future directions, this review provides a coherent perspective on how plasmonics and MSs are reshaping the design space of next-generation planar optical hardware. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

14 pages, 5048 KB  
Article
Transmissive Multilayer Geometric Phase Gratings Using Water-Soluble Alignment Material
by Fatemeh Abbasi, Kristiaan Neyts, Inge Nys and Jeroen Beeckman
Crystals 2026, 16(1), 62; https://doi.org/10.3390/cryst16010062 - 15 Jan 2026
Viewed by 27
Abstract
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating [...] Read more.
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating protective interlayers. This study demonstrates a water-soluble photoalignment approach using AbA-2522 that eliminates these fabrication barriers. The water-soluble alignment material enables direct multilayer processing without layer damage while maintaining alignment quality equivalent to conventional materials. We successfully fabricate compact transmissive devices integrating liquid crystal polarization gratings with quarter-wave plates, achieving a first-order diffraction efficiency of 65.4% for 9 μm period gratings for linearly polarized incident light (λ = 457 nm). The multilayer structure exhibits highly selective polarization-dependent diffraction with efficiency ratios exceeding 10:1 between preferred and suppressed orders, eliminating external polarization control elements. Polarized optical microscopy confirms excellent alignment uniformity, while the fabrication process offers environmental benefits and reduced complexity. This approach establishes a practical pathway for advanced multilayer photonic devices critical for next-generation augmented reality systems and photonic integration, addressing fundamental challenges that have limited multilayer liquid crystal device development. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Graphical abstract

18 pages, 3970 KB  
Article
Light Scattering from Small Clusters of Chiral and Symmetric Particles: Shape-Dependent Analysis
by Yehor Surkov, Yuriy Shkuratov, Karri Muinonen, Antti Penttilä, Vadym Kaydash, Yongxiang Hu, Yong-Le Pan, Chuji Wang and Gorden Videen
Appl. Sci. 2026, 16(2), 839; https://doi.org/10.3390/app16020839 - 14 Jan 2026
Viewed by 81
Abstract
We present a numerical study comparing light scattering by small clusters composed of helices, capsules, and spheres. Using the discrete-dipole approximation (DDA), we compute orientation-averaged Mueller-matrix elements M11, M12, and M14 for clusters with varying number of monomers [...] Read more.
We present a numerical study comparing light scattering by small clusters composed of helices, capsules, and spheres. Using the discrete-dipole approximation (DDA), we compute orientation-averaged Mueller-matrix elements M11, M12, and M14 for clusters with varying number of monomers (N = 5–45) and mean center-to-center separation (1–10 particle diameters). Our analysis isolates the influence of particle morphology on angular scattering intensity, linear polarization, and circular intensity differential scattering (CIDS), providing a direct comparison of symmetric and chiral shapes. Helices display persistent angular fine structure in M11 and deep, side-scattering maxima in M12, while spheres and capsules converge to smoother polarization curves with increasing separation. CIDS from symmetric monomers manifests as small oscillations around zero that decay rapidly with monomer separation and number. In contrast, helices produce a stable backward CIDS slope that is largely separation-independent but gradually flattens with increasing number of monomers. These trends confirm that morphology alone can influence key polarization characteristics and provide insights for interpreting scattering from complex-shaped particles. Such morphology-related features may help in the interpretation of polarization data in aerosol and planetary remote sensing and justify the refinement of the design of optical setups for studying irregular or chiral particles in controlled environments. Full article
(This article belongs to the Special Issue Current Updates on Optical Scattering)
Show Figures

Figure 1

11 pages, 1684 KB  
Article
Polarization Dependence on the Optical Emission in Nd-Doped Bioactive W-TCP Coatings
by Daniel Sola, Eloy Chueca and José Ignacio Peña
J. Funct. Biomater. 2026, 17(1), 38; https://doi.org/10.3390/jfb17010038 - 13 Jan 2026
Viewed by 180
Abstract
Neodymium-doped bioactive wollastonite–tricalcium phosphate (W-TCP:Nd) coatings were fabricated by combining dip-coating and laser floating zone (LFZ) techniques to investigate the dependence of optical emission on polarization. Structural and spectroscopic analyses were performed on both longitudinal and transversal sections of the coating to assess [...] Read more.
Neodymium-doped bioactive wollastonite–tricalcium phosphate (W-TCP:Nd) coatings were fabricated by combining dip-coating and laser floating zone (LFZ) techniques to investigate the dependence of optical emission on polarization. Structural and spectroscopic analyses were performed on both longitudinal and transversal sections of the coating to assess the effects of directional solidification on luminescence and vibrational behavior. Micro-Raman spectroscopy revealed that the coating exhibited sharp, well-defined peaks compared to the W-TCP:Nd glass, confirming its glass-ceramic nature. New Raman modes appeared in the longitudinal section, accompanied by red and blue shifts in some bands relative to the transversal section, suggesting the presence of anisotropic stress and orientation-dependent crystal growth. Optical emission measurements showed that while the 4F3/24I11/2 transition near 1060 nm was nearly polarization independent, the 4F3/24I9/2 transition around 870–900 nm exhibited strong polarization dependence with notable Stark splitting. The relative intensity and spectral position of the Stark components varied systematically with the rotation of the emission polarization. These findings demonstrate that directional solidification induces polarization-dependent optical behavior, indicating potential applications for polarization-sensitive optical tracking and sensing in bioactive implant coatings. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Figure 1

28 pages, 6605 KB  
Article
A New Method of Evaluating Multi-Color Ellipsometric Mapping on Big-Area Samples
by Sándor Kálvin, Berhane Nugusse Zereay, György Juhász, Csaba Major, Péter Petrik, Zoltán György Horváth and Miklós Fried
Sci 2026, 8(1), 17; https://doi.org/10.3390/sci8010017 - 13 Jan 2026
Viewed by 147
Abstract
Ellipsometric mapping measurements and Bayesian evaluation were performed with a non-collimated, imaging ellipsometer using an LCD monitor as a light source. In such a configuration, the polarization state of the illumination and the local angle of incidence vary spatially and spectrally, rendering conventional [...] Read more.
Ellipsometric mapping measurements and Bayesian evaluation were performed with a non-collimated, imaging ellipsometer using an LCD monitor as a light source. In such a configuration, the polarization state of the illumination and the local angle of incidence vary spatially and spectrally, rendering conventional spectroscopic ellipsometry inversion methods hardly applicable. To address these limitations, a multilayer optical forward model is augmented with instrument-specific correction parameters describing the polarization state of the monitor and the angle-of-incidence map. These parameters are determined through a Bayesian calibration procedure using well-characterized Si-SiO2 reference wafers. The resulting posterior distribution is explored by global optimization based on simulated annealing, yielding a maximum a posteriori estimate, followed by marginalization to quantify uncertainties and parameter correlations. The calibrated correction parameters are subsequently incorporated as informative priors in the Bayesian analysis of unknown samples, including polycrystalline–silicon layers deposited on Si-SiO2 substrates and additional Si-SiO2 wafers outside the calibration set. The approach allows consistent propagation of calibration uncertainties into the inferred layer parameters and provides credible intervals and correlation information that cannot be obtained from conventional least-squares methods. The results demonstrate that, despite the broadband nature of the RGB measurement and the limited number of analyzer orientations, reliable layer thicknesses can be obtained with quantified uncertainties for a wide range of technologically relevant samples. The proposed Bayesian framework enables a transparent interpretation of the measurement accuracy and limitations, providing a robust basis for large-area ellipsometric mapping of multilayer structures. Full article
Show Figures

Figure 1

22 pages, 6056 KB  
Article
Interface-Engineered Copper–Barium Strontium Titanate Composites with Tunable Optical and Dielectric Properties
by Mohammed Tihtih, M. A. Basyooni-M. Kabatas, Redouane En-nadir and István Kocserha
Nanomaterials 2026, 16(2), 96; https://doi.org/10.3390/nano16020096 - 12 Jan 2026
Viewed by 188
Abstract
We report the synthesis and multifunctional characterization of copper-reinforced Ba0.85Sr0.15TiO3 (BST) ceramic composites with Cu contents ranging from 0 to 40 wt%, prepared by a sol–gel route and densified using spark plasma sintering (SPS). X-ray diffraction and FT-IR [...] Read more.
We report the synthesis and multifunctional characterization of copper-reinforced Ba0.85Sr0.15TiO3 (BST) ceramic composites with Cu contents ranging from 0 to 40 wt%, prepared by a sol–gel route and densified using spark plasma sintering (SPS). X-ray diffraction and FT-IR analyses confirm the coexistence of cubic and tetragonal BST phases, while Cu remains as a chemically separate metallic phase without detectable interfacial reaction products. Microstructural observations reveal abnormal grain growth induced by localized liquid-phase-assisted sintering and progressive Cu agglomeration at higher loadings. Scanning electron microscopy reveals abnormal grain growth, with the average BST grain size increasing from approximately 3.1 µm in pure BST to about 5.2 µm in BST–Cu40% composites. Optical measurements show a continuous reduction in the effective optical bandgap (apparent absorption edge) from 3.10 eV for pure BST to 2.01 eV for BST–Cu40%, attributed to interfacial electronic states, defect-related absorption, and enhanced scattering rather than Cu lattice substitution. Electrical characterization reveals a percolation threshold at approximately 30 wt% Cu, where AC conductivity and dielectric permittivity reach their maximum values. Impedance spectroscopy and equivalent-circuit analysis demonstrate strong Maxwell–Wagner interfacial polarization, yielding a maximum permittivity of ~1.2 × 105 at 1 kHz for BST–Cu30%. At higher Cu contents, conductivity and permittivity decrease due to disrupted Cu connectivity and increased porosity. These findings establish BST–Cu composites as tunable ceramic–metal systems with enhanced dielectric and optical responses, demonstrating potential for specialized high-capacitance decoupling applications where giant permittivity is prioritized over low dielectric loss. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

24 pages, 3202 KB  
Article
Breaking the Cross-Sensitivity Degeneracy in FBG Sensors: A Physics-Informed Co-Design Framework for Robust Discrimination
by Fatih Yalınbaş and Güneş Yılmaz
Sensors 2026, 26(2), 459; https://doi.org/10.3390/s26020459 - 9 Jan 2026
Viewed by 192
Abstract
The simultaneous measurement of strain and temperature using Fiber Bragg Grating (FBG) sensors presents a significant challenge due to the intrinsic cross-sensitivity of the Bragg wavelength. While recent studies have increasingly employed “black-box” machine learning algorithms to address this ambiguity, such approaches often [...] Read more.
The simultaneous measurement of strain and temperature using Fiber Bragg Grating (FBG) sensors presents a significant challenge due to the intrinsic cross-sensitivity of the Bragg wavelength. While recent studies have increasingly employed “black-box” machine learning algorithms to address this ambiguity, such approaches often overlook the physical limitations of the sensor’s spectral response. This paper challenges the assumption that advanced algorithms alone can compensate for data that is physically ambiguous. We propose a “Sensor-Algorithm Co-Design” methodology, demonstrating that robust discrimination is achievable only when the sensor architecture exhibits a unique, orthogonal physical signature. Using a rigorous Transfer Matrix Method (TMM) and 4 × 4 polarization analysis, we evaluate three distinct architectures. Quantitative analysis reveals that a standard Quadratically Chirped FBG (QC-FBG) functions as an “ill-conditioned baseline” failing to distinguish measurands due to feature space collapse (Kcond>4600). Conversely, we validate two robust co-designs: (1) An Amplitude-Modulated Superstructure FBG (S-FBG) paired with an Artificial Neural Network (ANN), utilizing thermally induced duty-cycle variations to achieve high accuracy (~3.4 °C error) under noise; and (2) A Polarization-Diverse Inverse-Gaussian FBG (IG-FBG) paired with a 4 × 4 K-matrix, exploiting strain-induced birefringence (Kcond64). Furthermore, we address the data scarcity issue in AI-driven sensing by introducing a Physics-Informed Neural Network (PINN) strategy. By embedding TMM physics directly into the loss function, the PINN improves data efficiency by 2.2× compared to standard models, effectively bridging the gap between physical modeling and data-driven inference, addressing the critical data scarcity bottleneck identified in recent optical sensing roadmaps. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

13 pages, 9188 KB  
Article
Experimentally Self-Testing Partially Entangled Two-Qubit States on an Optical Platform
by Xin Zhao, Yan-Han Yang, Li-Ming Zhao and Ming-Xing Luo
Entropy 2026, 28(1), 79; https://doi.org/10.3390/e28010079 - 9 Jan 2026
Viewed by 217
Abstract
We demonstrate a complete and experimentally validated self-testing protocol for two-qubit partially entangled states, which avoids the need for full tomographic reconstruction. Using a room-temperature type-II PPKTP polarization-entangled source and a free-space optical setup, we implement both quantum state tomography and optimal generalized [...] Read more.
We demonstrate a complete and experimentally validated self-testing protocol for two-qubit partially entangled states, which avoids the need for full tomographic reconstruction. Using a room-temperature type-II PPKTP polarization-entangled source and a free-space optical setup, we implement both quantum state tomography and optimal generalized Bell measurements within a single system. Our approach achieves high-fidelity self-testing of non-maximally entangled states under black-box assumptions, establishing a solid foundation for device-independent quantum information processing applications. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

26 pages, 11357 KB  
Article
An Advanced Multi-Analytical Approach to Study Baroque Painted Wood Sculptures from Apulia (Southern Italy)
by Daniela Fico, Giorgia Di Fusco, Maurizio Masieri, Raffaele Casciaro, Daniela Rizzo and Angela Calia
Materials 2026, 19(2), 284; https://doi.org/10.3390/ma19020284 - 9 Jan 2026
Viewed by 276
Abstract
Three painted valuable wood sculptures from conventual collections in Apulia (Southern Italy), made between the beginning of the 17th century and the first half of the 18th century, were studied to shed light on the pictorial materials and techniques of the Neapolitan Baroque [...] Read more.
Three painted valuable wood sculptures from conventual collections in Apulia (Southern Italy), made between the beginning of the 17th century and the first half of the 18th century, were studied to shed light on the pictorial materials and techniques of the Neapolitan Baroque sculpture in Southern Italy. A multi-analytical approach was implemented using integrated micro-invasive techniques, including polarized light microscopy (PLM) in ultraviolet (UV) and visible (VIS) light, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), Fourier-Transform Infrared (FTIR) spectroscopy, and pyrolysis–gas chromatography/high-resolution mass spectrometry (Py-GC/HRMS). The stratigraphic sequences were microscopically identified, and the pictorial layers were discriminated on the basis of optical features, elemental compositions, and mapping. Organic components were detected by FTIR as lipids and proteinaceous compounds for binders, while terpenic resins were detected as varnishes. Accordingly, PY-GC/HRMS identified siccative oils, animal glue, egg, and colophony. The results allowed the identification of the painting techniques used for the pictorial films and the ground preparation layers and supported the distinction between original and repainting layers. The results of this multi-analytical approach provide insights into Baroque wooden sculpture in Southern Italy and offers information to support restorers in conservation works. Full article
Show Figures

Figure 1

36 pages, 5941 KB  
Review
Physics-Driven SAR Target Detection: A Review and Perspective
by Xinyi Li, Lei Liu, Gang Wan, Fengjie Zheng, Shihao Guo, Guangde Sun, Ziyan Wang and Xiaoxuan Liu
Remote Sens. 2026, 18(2), 200; https://doi.org/10.3390/rs18020200 - 7 Jan 2026
Viewed by 291
Abstract
Synthetic Aperture Radar (SAR) is highly valuable for target detection due to its all-weather, day-night operational capability and certain ground penetration potential. However, traditional SAR target detection methods often directly adapt algorithms designed for optical imagery, simplistically treating SAR data as grayscale images. [...] Read more.
Synthetic Aperture Radar (SAR) is highly valuable for target detection due to its all-weather, day-night operational capability and certain ground penetration potential. However, traditional SAR target detection methods often directly adapt algorithms designed for optical imagery, simplistically treating SAR data as grayscale images. This approach overlooks SAR’s unique physical nature, failing to account for key factors such as backscatter variations from different polarizations, target representation changes across resolutions, and detection threshold shifts due to clutter background heterogeneity. Consequently, these limitations lead to insufficient cross-polarization adaptability, feature masking, and degraded recognition accuracy due to clutter interference. To address these challenges, this paper systematically reviews recent research advances in SAR target detection, focusing on physical constraints including polarization characteristics, scattering mechanisms, signal-domain properties, and resolution effects. Finally, it outlines promising research directions to guide future developments in physics-aware SAR target detection. Full article
Show Figures

Figure 1

14 pages, 2404 KB  
Article
Red-Pitaya-Based Frequency Stabilization of 1560-nm Fiber Laser to 780-nm Rubidium Atomic Transition via Single-Pass Frequency Doubling
by Yirong Wei, Ziwen Wang, Yuewei Wang, Yuhui Yang, Tao Wang, Rui Chang and Junmin Wang
Photonics 2026, 13(1), 57; https://doi.org/10.3390/photonics13010057 - 7 Jan 2026
Viewed by 219
Abstract
The single-step Rydberg excitation of cesium atoms requires a 319 nm ultraviolet laser with a narrow laser linewidth, high frequency stability, and high output power. To meet these requirements, in this work, we construct a high-power, single-frequency UV laser system at this wavelength. [...] Read more.
The single-step Rydberg excitation of cesium atoms requires a 319 nm ultraviolet laser with a narrow laser linewidth, high frequency stability, and high output power. To meet these requirements, in this work, we construct a high-power, single-frequency UV laser system at this wavelength. In this system, the frequency stabilization of the 1560.492 nm seed laser is critical to the performance of the ultraviolet laser. We employ nonlinear frequency conversion technology, the 1560.492 nm laser is frequency-doubled to 780.246 nm via a single pass through a PPLN crystal, and function integration is realized based on the modular parameter adjustment interface provided by the PyRPL software. Subsequently, the 1560.492 nm laser is stabilized to the D2 hyperfine transition line of Rb-87 atoms using polarization spectroscopy (PS) and radio-frequency-modulated saturation absorption spectroscopy (RF-SAS). A comparative study of these two techniques shows that RF-SAS achieves superior stabilization performance, with the residual frequency fluctuation of the frequency-doubled laser being 1.07 MHz over 30 min. According to frequency doubling theory, the actual residual frequency fluctuation of the 1560.492 nm fundamental-frequency laser can be calculated as 0.535 MHz. Compared with our earlier scheme that utilized an ultra-low-expansion (ULE) optical cavity as a frequency reference, the present scheme eliminates the long-term drift induced by environmental factors. In contrast to frequency stabilization relying on discrete instruments, this integrated scheme significantly reduces the cost, simplifies the system architecture, saves space, and greatly enhances the flexibility and controllability of the system. It therefore provides a reliable and cost-effective solution to ensure the portability and practicability of high-performance UV laser sources. This high-precision frequency stabilization scheme directly guarantees the performance of the 319 nm UV laser, suppressing its linewidth below 10 kHz. Thus, it fully meets the stringent laser linewidth and frequency stability requirements for the single-step Rydberg excitation of cesium atoms and provides a reliable light source foundation for subsequent precision spectroscopic measurements. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 3rd Edition)
Show Figures

Figure 1

23 pages, 3269 KB  
Article
Benzoxazole Iminocoumarins as Multifunctional Heterocycles with Optical pH-Sensing and Biological Properties: Experimental, Spectroscopic and Computational Analysis
by Marina Galić, Ana Čikoš, Leentje Persoons, Dirk Daelemans, Karolina Vrandečić, Maja Karnaš, Marijana Hranjec and Robert Vianello
Chemosensors 2026, 14(1), 15; https://doi.org/10.3390/chemosensors14010015 - 3 Jan 2026
Viewed by 242
Abstract
A novel series of benzoxazole-derived iminocoumarins was synthesized via a Knoevenagel condensation and fully characterized using NMR, UV–Vis spectroscopy, and computational methods. Their photophysical properties were systematically examined in solvents of varying polarity, revealing pronounced effects of both substituents and solvent environment on [...] Read more.
A novel series of benzoxazole-derived iminocoumarins was synthesized via a Knoevenagel condensation and fully characterized using NMR, UV–Vis spectroscopy, and computational methods. Their photophysical properties were systematically examined in solvents of varying polarity, revealing pronounced effects of both substituents and solvent environment on absorption maxima and intensity. Derivatives bearing electron-donating substituents on the coumarin core exhibited distinct and reversible pH-responsive spectral shifts, confirming their potential as optical pH probes. Experimental pKa values derived from absorption titrations showed excellent agreement with DFT-calculated data, validating the proposed protonation-deprotonation equilibria and associated electronic structure changes. Structure–property relationships revealed that electron-donating groups enhance intramolecular charge transfer, while electron-withdrawing substituents modulate spectral response and stability. In parallel, the compounds were evaluated for antiproliferative, antiviral, and antifungal activities in vitro. Strong electron-donating substituents were associated with potent but non-selective cytotoxicity, whereas derivatives bearing electron-withdrawing groups displayed moderate and more selective antiproliferative effects against leukemia cell lines. Antifungal screening revealed moderate inhibition of phytopathogenic fungi, particularly for compounds with electron-withdrawing or methoxy substituents. Overall, these findings demonstrate that benzoxazole iminocoumarins represent a promising class of multifunctional heterocycles with potential applications as optical pH sensors and scaffolds for bioactive compound development. Full article
(This article belongs to the Section Optical Chemical Sensors)
Show Figures

Figure 1

22 pages, 3163 KB  
Article
Dual-Band Electrochromic Poly(Amide-Imide)s with Redox-Stable N,N,N’,N’-Tetraphenyl-1,4-Phenylenediamine Segments
by Bo-Wei Huang and Sheng-Huei Hsiao
Polymers 2026, 18(1), 139; https://doi.org/10.3390/polym18010139 - 3 Jan 2026
Viewed by 278
Abstract
Two amide-preformed aromatic diamine monomers, N,N-bis(4-(3-aminobenzamido)phenyl)-N’,N’-bis(4-methoxyphenyl)-1,4-phenylenediamine (m-6) and N,N-bis(4-(4-aminobenzamido)phenyl)-N’,N’-bis(4-methoxyphenyl)-1,4-phenylenediamine (p-6), were synthesized and utilized to prepare two series of electroactive poly(amide-imide)s [...] Read more.
Two amide-preformed aromatic diamine monomers, N,N-bis(4-(3-aminobenzamido)phenyl)-N’,N’-bis(4-methoxyphenyl)-1,4-phenylenediamine (m-6) and N,N-bis(4-(4-aminobenzamido)phenyl)-N’,N’-bis(4-methoxyphenyl)-1,4-phenylenediamine (p-6), were synthesized and utilized to prepare two series of electroactive poly(amide-imide)s (PAIs) through a two-step polycondensation reaction with commercially available aromatic tetracarboxylic dianhydrides. The obtained polymers exhibited solubility in various polar organic solvents, and most of them could form transparent, flexible films via solution casting. Thermal analysis indicated glass transition temperatures (Tg) ranging from 250 °C to 277 °C, as measured by DSC, with no significant weight loss observed before 400 °C in TGA tests. Cyclic voltammograms (CV) of the polymer films on ITO-coated glass substrates revealed two reversible oxidation redox pairs between 0.67 and 1.04 V vs. Ag/AgCl in an electrolyte-containing acetonitrile solution. The PAI films showed stable redox activity with high optical contrast both in the visible and near-infrared regions, transitioning from colorless in the neutral state to green and blue in the oxidized states. Furthermore, the polymer films retained good electrochemical and electrochromic stability even after more than 100 cyclic switching operations. The PAIs displayed outstanding electrochromic performance, including high optical contrast (up to 95%), rapid response times (below 4.6 s for coloring and 5.7 s for bleaching), high coloration efficiency (up to 240 cm2/C), and low decay in optical contrast (less than 5% after 100 switching cycles for most PAIs). Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

11 pages, 5555 KB  
Article
Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals
by Zijun Yu, Chen Zou and Dexin Yang
Nanomaterials 2026, 16(1), 57; https://doi.org/10.3390/nano16010057 - 31 Dec 2025
Viewed by 251
Abstract
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. [...] Read more.
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. In this work, we observed reversible phase transitions from cubic to tetragonal, and further to orthorhombic symmetry, accompanied by the formation and evolution of strip-like ferroelastic domain walls, using in situ X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and dielectric measurements. Notably, the dielectric studies revealed low temperature (~170–180 K) frequency-dependent loss peaks that we attribute to the pinning of polarized domain walls by chloride vacancies. We also found that the formation or disappearance of ferroelastic domain walls near the octahedral tilting transition temperatures leads to pronounced anomalies in the dielectric permittivity. These findings clarify the intrinsic phase behavior of CsPbCl3 single crystals and underscore the significant contribution of ferroelastic domain walls to its dielectric response, providing insights for optimizing its optoelectronic performance. Full article
Show Figures

Graphical abstract

14 pages, 1968 KB  
Article
Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling
by Lehong Huang, Yuting Gao, Bo Peng and Caiwen Ma
Photonics 2026, 13(1), 31; https://doi.org/10.3390/photonics13010031 - 30 Dec 2025
Viewed by 212
Abstract
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride [...] Read more.
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride (Ge/YbF3) selective emitter with an amorphous silicon (a-Si) two-dimensional periodic microstructure. The multilayer film, optimized using the transfer-matrix method and a particle swarm optimisation algorithm, achieves low emissivity in the 3–5 μm and 8–14 μm infrared atmospheric windows and high emissivity within 5–8 μm for radiative cooling, while introducing a narrowband absorption peak at 1.55 μm. Additionally, the a-Si microstructure provides strong narrowband absorption at 10.6 μm via a grating-resonance mechanism. FDTD simulations confirm low emissivity in the infrared windows, high absorptance at LiDAR wavelengths, and good angular and polarization robustness. This work demonstrates a multifunctional photonic structure capable of integrating infrared camouflage, laser camouflage, and thermal-radiation control. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop