Abstract
Microseismic monitoring is extensively applied in hydraulic fracturing and mineral extraction, with accurate event localization being a critical component. Recently, deep learning approaches have shown promise for microseismic event localization; however, most of these supervised methods depend on large, labeled datasets, which are costly and challenging to acquire. To mitigate this issue, we propose a semi-supervised approach based on a residual convolutional autoencoder (RCAE) for automated microseismic localization, designed to leverage limited labeled data effectively and improve source localization accuracy even with small sample sizes. Our method employs pre-training by masking and reconstructing unlabeled seismic records, while integrating residual connections within the encoder to enhance feature extraction from seismic signals. This enables high localization accuracy with minimal labeled data, resulting in significant cost savings. Experimental results indicate that our method surpasses purely supervised approaches on both a 2D salt dome model and a 3D homogeneous half-space model, validating its effectiveness in microseismic localization. Further comparisons with baseline models highlight the method’s advantages, providing an innovative solution for improving cost-efficiency in practical applications.