Abstract
Assurance of the integrity of every weld joint is highly desirable, and defect detection methods that can be applied to welds at high temperatures immediately after welding are required. The laser ultrasonic (LU) method, which generates ultrasonic waves in the target via pulsed laser irradiation, is a well-known technique for non-contact defect detection during welding. Ultrasonic waves excited in ablation mode exhibit large amplitudes and predominantly surface-normal propagation, which has driven extensive research into their application for weld inspection. However, owing to the size and weight of conventional equipment, such systems have largely been limited to bench-top experimental setups. To address this, we developed an LU robotic system incorporating a compact, lightweight laser source and an improved signal-processing system. We conducted experiments to measure signals and to detect backside slits in flat plates and blowholes in lap-fillet welds. Additionally, a method to improve the sensitivity of laser interferometers was investigated and demonstrated on smut-covered areas near weld beads.