applsci-logo

Journal Browser

Journal Browser

Industrial Applications of Laser Ultrasonics

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Optics and Lasers".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 727

Special Issue Editor


E-Mail Website
Guest Editor
School of Aerospace, Xi’an Jiaotong University, Xi'an 710049, China
Interests: laser ultrasonics; nondestructive evaluation; electromagnetic acoustic transducers; guided wave; infrared thermography
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Laser ultrasonic testing (LUT) is a new non-destructive technique that is widely studied for damage inspection and material characterization. Due to its non-contact, high detection speed, and high-resolution features, laser utlrasonics has a very broad application prospect in the industrial field. However, new challenges and demands from industries are constantly emerging. Therefore, this Special Issue is dedicated to the recent advances in industrial applications of laser ultrasonics. Topics of interest include but are not limited to thew following:

  1. Laser ultrasonic sensors and system;
  2. Laser ultrasonics for damage inspection;
  3. Laser ultrasonics for material characterization;
  4. Laser ultrasonics online detection;
  5. Laser ultrasonics for composite material testing;
  6. Laser ultrasonic testing singnal processing;
  7. AI for industrial application of laser ultrasonics.

Dr. Cuixiang Pei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • laser ultrasonics
  • non-destructive testing
  • industrial applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4884 KiB  
Article
A Titanium Alloy Defect Detection Method Based on Optical–Acoustic Image Fusion
by Mingzhen Wang, Yang Zhao, Yufeng Huang and Gang Zhao
Appl. Sci. 2025, 15(15), 8294; https://doi.org/10.3390/app15158294 - 25 Jul 2025
Viewed by 98
Abstract
Nowadays, a single detection method is insufficient for comprehensively and clearly identifying both surface defects and inner defects in titanium alloys. To address this limitation, this paper proposes a titanium alloy defect detection method based on optical–acoustic image fusion. A detection system was [...] Read more.
Nowadays, a single detection method is insufficient for comprehensively and clearly identifying both surface defects and inner defects in titanium alloys. To address this limitation, this paper proposes a titanium alloy defect detection method based on optical–acoustic image fusion. A detection system was developed to achieve comprehensive and precise inspection of titanium alloys by integrating advanced deep learning-based optical testing technology, reliable C-scan ultrasonic detection technology, and information fusion techniques. Furthermore, the PC software can output interactive fusion results and generate decision-level detection reports. The experimental results demonstrate that the surface defect detection algorithm achieves an accuracy of 99.0%, with a surface defect size measurement resolution of 0.01 mm, an internal defect size measurement resolution of 1 mm, and a positional error within 2 mm. It was found that the proposed method provides a potential solution for the practical application of inspecting surface defects and inner defects in the materials. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
Show Figures

Figure 1

15 pages, 2577 KiB  
Article
Study of Online Testing of Void Defects in AM Components with Grating Laser Ultrasonic Spectrum Method
by Hengtao Li, Yan Liu, Jinfeng Yang, Qinghua Guo, Zhichao Gan and Cuixiang Pei
Appl. Sci. 2025, 15(14), 7995; https://doi.org/10.3390/app15147995 - 17 Jul 2025
Viewed by 242
Abstract
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online [...] Read more.
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online evaluation of porosity in AM parts. Based on the theoretical relationship between surface acoustic wave (SAW) velocity and material porosity, a non-contact detection approach is developed, allowing the direct inference of porosity from the measured SAW velocities without requiring knowledge of the exact source–detector distance. Numerical simulations are conducted to analyze SAW propagation under varying porosity conditions and to validate the inversion model. Experimental measurements on aluminum alloy specimens with different porosity levels further confirm the sensitivity of SAW signals to internal voids. The results show consistent waveform and spectral trends between the simulation and experiment, supporting the feasibility of the proposed method for practical applications. Overall, the findings demonstrate the potential of this approach for the accurate online monitoring of void defects in metal AM components. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
Show Figures

Figure 1

Back to TopTop