Abstract
Flywheel energy storage systems play an important role in frequency regulation and power quality control within modern power grids, yet the fault signals generated by defects in their rolling bearings are typically indistinct, making direct diagnosis difficult. Raw noisy signals often yield unsatisfactory diagnostic performance when directly processed by neural networks. Although MOMEDA (Multipoint Optimal Minimum Entropy Deconvolution Adjusted) can effectively extract impulsive fault components, its performance is highly dependent on the selected fault period and filter length. To address these issues, this paper proposes an improved fault diagnosis method that integrates MOMEDA-based periodic extraction with a neural network classifier. The Artificial Fish Swarm Algorithm (AFSA) is employed to adaptively determine the key parameters of MOMEDA using multi-point kurtosis as the optimization objective, and the optimized parameters are used to enhance impulsive fault features. The filtered signals are then converted into image representations and fed into a ResNet-18 network (a compact 18-layer deep convolutional neural network from the residual network family) to achieve intelligent identification and classification of bearing faults. Experimental results demonstrate that the proposed method can effectively extract and diagnose bearing fault signals.