Decentralized Robust Direct MRAC via e-Modification for the Pose of a Quadrotor UAV
Abstract
1. Introduction
2. Quadrotor’s Dynamics
3. Decentralized Robust MRAC Design
3.1. Quadrotor’s Parametric Model
3.2. MRAC Design from Unmatched External Perturbations
4. Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMSSC | Adaptive multiple-surface sliding controller |
| DOF | Degree-of-freedom |
| HIL | Hardware-in-the-loop |
| LQR | Linear quadratic regulator |
| MIMO | Multiple-input multiple-output |
| MRAC | Model reference adaptive control |
| PID | Proportional–integral–derivative |
| UAV | Unmanned aerial vehicle |
| UUB | Uniform ultimate boundedness |
References
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Ioannou, P.A.; Sun, J. Robust Adaptive Control; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Lavretsky, E.; Wise, K.A. Robust and Adaptive Control with Aerospace Applications; Springer: London, UK, 2013. [Google Scholar]
- Peterson, B.B.; Narendra, K.S. Bounded error adaptive control. IEEE Trans. Automat. Contr. 1982, 27, 1161–1168. [Google Scholar] [CrossRef]
- Ioannou, P.A.; Kokotovic, P.V. Adaptive Systems with Reduced Models; Springer: New York, NY, USA, 1983. [Google Scholar]
- Ioannou, P.; Fidan, B. Adaptive Control Tutorial; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]
- Rohrs, C.E.; Valavani, L.S.; Athans, M.; Stein, G. Robustness of continuous time adaptive control algorithm in the presence of unmodeled dynamics. IEEE Trans. Autom. Control 1985, 30, 881–889. [Google Scholar] [CrossRef]
- Narendra, K.S.; Annaswamy, A.M. A new adaptive law for robust adaptive control without persistency of excitation. IEEE Trans. Autom. Control 1987, 32, 134–145. [Google Scholar] [CrossRef]
- Narendra, K.S.; Annaswamy, A.M. Stable Adaptive Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Slotine, J.J.E.; Coetsee, J.A. Adaptive sliding controller synthesis for nonlinear systems. Int. J. Control 1986, 43, 1639–1651. [Google Scholar] [CrossRef]
- Farrell, J.A.; Polycarpou, M.M. Adaptive Approximation Based Control; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bodson, M. Adaptive Estimation and Control; Independently Published: Coppell, TX, USA, 2020. [Google Scholar]
- Kitsios, I.; Dobrokhodov, V.; Kaminer, I.; Jones, K.D.; Xargay, E.; Hovakimyan, N.; Cao, C.; Lizarraga, M.I.; Gregory, I.M.; Nguyen, N.T.; et al. Experimental Validation of a Metrics Driven L1 Adaptive Control in the Presence of General Unmodeled Dynamics. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar]
- Huang, A.C.; Chen, Y.F.; Kai, C.Y. Adaptive Control of Underactuated Mechanical Systems; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2015; pp. 45–53. [Google Scholar]
- Yucelen, T.; Calise, A.J. Derivative-Free Adaptive Control; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2023. [Google Scholar]
- Martini, S.; Mennea, S.M.; Mihalkov, M.; Rizzo, A.; Valavanis, K.; Sorniotti, A.; Montanaro, U. Design and HIL Testing of Enhanced MRAC Algorithms to Improve Tracking Performance of LQ-strategies for Quadrotor UAVs. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024. [Google Scholar]
- Kumar, G.M.; Gramuglia, M.; L’Afflitto, A. Robust Hybrid Model Reference Adaptive Control and Output-Feedback Linearization with Applications to Quadcopter UAVs. In Adaptive Control Theory and Applications; Ioannou, P., Ed.; IntechOpen Limited: London, UK, 2024; pp. 49–72. [Google Scholar]
- Etkin, B.; Reid, L.D. Dynamics of Flight, Stability and Control, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Nijmeijer, H.; van der Schaft, A. Nonlinear Dynamical Control Systems; Springer: New York, NY, USA, 1990. [Google Scholar]
- Friedland, B. Control System Design: An Introduction to State-Space Methods; Dover Publications, Inc.: Mineola, NY, USA, 2005. [Google Scholar]
- Bouabdallah, S.; Murrieri, P.; Siegwart, R. Design and Control of an Indoor Micro Quadrotor. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Šiljak, D.D. Decentralized Control of Complex Systems; Dover Publications, Inc.: Mineola, NY, USA, 2012. [Google Scholar]
- User Manual QBall 2 for QUARC; Quanser Inc.: Markham, ON, Canada, 2014.
- Jurado, F.; Lopez, S.; Dzul, A.; Rodríguez-Cortés, H. Decentralized control of the quadrotor’s 6-DOF. In Proceedings of the 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, 21–24 November 2017. [Google Scholar]
- Jurado, F.; Hernández, R. Decentralized MRAC with integral action for attitude control of a quadrotor UAV. In Proceedings of the 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 14–16 November 2018. [Google Scholar]
- Åström, K.; Hagglund, T. PID Controllers: Theory, Design, and Tuning, 2nd ed; ISA—The Instrumentation, Systems and Automation Society: Durham, NC, USA, 1995. [Google Scholar]
- Jurado, F. Decentralized Robust Direct MRAC for the Attitude of a Quadrotor UAV. In Adaptive Control Theory and Applications; Ioannou, P., Ed.; IntechOpen Limited: London, UK, 2024; pp. 73–88. [Google Scholar]



















| Subsystem | ||||
|---|---|---|---|---|
| Roll motion | 22.2595 | 10.2967 | 24.1888 | 14.0219 |
| Pitch motion | 23.1711 | 10.2967 | 27.2698 | 14.0219 |
| Yaw motion | 12.0338 | 10.2965 | 9.6264 | 7.2366 |
| Subsystem | ||||
|---|---|---|---|---|
| Roll motion | 22.3711 | 10.2966 | 50.8247 | 44.3231 |
| Pitch motion | 23.2681 | 10.2966 | 53.4610 | 44.3231 |
| Yaw motion | 12.0469 | 10.2965 | 12.8072 | 22.8841 |
| Subsystem | ||||
|---|---|---|---|---|
| Roll motion | 22.4298 | 10.2966 | 57.1221 | 140.1441 |
| Pitch motion | 23.3342 | 10.2966 | 60.4800 | 140.1441 |
| Yaw motion | 12.0506 | 10.2965 | 14.5524 | 72.3658 |
| Subsystem | |
|---|---|
| Roll motion | 22.4368 |
| Pitch motion | 23.3421 |
| Yaw motion | 12.0394 |
| Subsystem | |||
| Roll motion | 53.6054 | 24.8979 | 24.4003 |
| Pitch motion | 47.8176 | 22.1182 | 21.8824 |
| Yaw motion | 23.8182 | 11.1669 | 11.0644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurado, F.; Ollervides-Vazquez, E.J. Decentralized Robust Direct MRAC via e-Modification for the Pose of a Quadrotor UAV. Appl. Sci. 2025, 15, 11713. https://doi.org/10.3390/app152111713
Jurado F, Ollervides-Vazquez EJ. Decentralized Robust Direct MRAC via e-Modification for the Pose of a Quadrotor UAV. Applied Sciences. 2025; 15(21):11713. https://doi.org/10.3390/app152111713
Chicago/Turabian StyleJurado, Francisco, and Edmundo Javier Ollervides-Vazquez. 2025. "Decentralized Robust Direct MRAC via e-Modification for the Pose of a Quadrotor UAV" Applied Sciences 15, no. 21: 11713. https://doi.org/10.3390/app152111713
APA StyleJurado, F., & Ollervides-Vazquez, E. J. (2025). Decentralized Robust Direct MRAC via e-Modification for the Pose of a Quadrotor UAV. Applied Sciences, 15(21), 11713. https://doi.org/10.3390/app152111713

