Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes
Abstract
1. Introduction
- ➢
- Photolithography
- ➢
- Laser ablation
- ➢
- Hot embossing and nanoimprint lithography
- ➢
- Mosquito method
- ➢
- Inkjet printing
- ➢
- Aerosol jet printing and flexographic printing
- ➢
- Electrohydrodynamic (EHD) jet printing
2. Subtractive Methods
2.1. Photolithography
2.1.1. Mask Photolithography
2.1.2. Maskless Photolithography
Direct Laser Writing (DLW)
Electron Beam Lithography (EBL)
2.2. Laser Ablation
| Fabrication Method | Material (Lower Cladding/Core/ Upper Cladding) | Core Dimensions (µm) | SM/MM | Propagation Losses (dB/cm) | Ref. |
|---|---|---|---|---|---|
| Photolithography | SiO2/SU-8/NOA61 | 4 × 2 | SM | 0.25, PDL: 0.03 (λ = 800 nm) 0.62, PDL: 0.15 (λ = 1.31 µm) 1.25, PDL: 0.46 (λ = 1.55 µm) | [48] |
| 6–12 × 2 | MM | ||||
| Digital UV lithography | SiO2/SU-8/Air | 2.4 × 2.1 | SM | 2.38 (λ = 1.55 µm) | [49] |
| Contact photolithography | NOA71/NOA61/NOA71 | 6 × 5 | SM | 0.85 (λ = 1.3 µm) 1.83 (λ = 1.55 μm) | [52] |
| Photolithography | BCB/BCB/BCB (different formulations) | 8.7 × 6.8 | SM | 0.81 (λ = 1.3 µm) | [54] |
| Photolithography | SiO2/BCB/OPTOCAST 3553 | 4 × 2.8 | SM | 1.8, PDL: 0.15 (λ = 1.55 μm) | [55] |
| Photolithography | SiO2/BCB/OPTOCAST 3553 | 5 × 2 | SM | 1.6, PDL: 0.4 (λ = 1.55 μm) | [56] |
| Direct laser writing | SiO2/SU-8/Air | 0.6 × 0.6 | SM | 4.38 ± 0.55 (λ = 633 nm) | [63] |
| 1.7 × 0.6 | MM | 6.4 ± 0.3 (λ = 633 nm) | |||
| Electron beam lithography | SiO2/SU-8/Air | 1.38 × 4.8 | SM | 1.03 ± 0.19 (λ = 1.3 μm) | [70] |
| Electron beam lithography | UV15/SU-8/Epo-Tek OG-125 | 2 × 2 | SM | - | [71] |
| Electron beam lithography | NOA61/ENR/NOA61 | (4–8) × 1.8 | SM | 0.22 (λ = 1.31 μm), 0.48 (λ = 1.55 μm) | [72] |
| NOA61/ENR/Air | 0.41 (λ = 1.31 μm), 0.49 (λ = 1.55 μm) | ||||
| Electron beam lithography | Teflon/mr-L 6000/Teflon | 6 × 1 | SM | - | [73] |
| Laser ablation | Truemode (core), cladding not specified | 65 × 55 | MM | 0.13 (λ = 850 nm), 0.035 (λ = 980 nm), 0.17 (λ = 1.31 μm) | [78] |
| Laser ablation | Polysiloxane/Truemode/Polysiloxane | 45 × 45, 35 × 70, 50 × 35 | MM | - | [79] |
3. Replication Methods
Hot Embossing and Nanoimprint Lithography (NIL)
| Fabrication Method | Material (Lower Cladding/Core/ Upper Cladding) | Core Dimensions (µm) | SM/MM | Propagation Losses (dB/cm) | Ref. |
|---|---|---|---|---|---|
| Hot embossing | PMMA/Epoxy resin/PMMA | 100 × 100 | - | 0.30 (λ = 650 nm) | [91] |
| 300 × 300 | 0.22 (λ = 650 nm) | ||||
| 500 × 500 | 0.13–0.19 (λ = 650 nm) | ||||
| Hot embossing | PMMA/OG198-54/Air | 25 × 28 | MM | 0.97 (λ = 633 nm), 0.30 (λ = 850 nm) | [93] |
| PMMA/OG142/Air | 2.56 (λ = 633 nm), 1.05 (λ = 850 nm) | ||||
| PMMA/NOA68/Air | 0.74 (λ = 633 nm), 0.81 (λ = 850 nm) | ||||
| Hot embossing | PMMA/UV-curable material/PMMA | 42 × 43 | MM | 0.1 (λ = 850 nm) | [94] |
| Hot embossing and microcontact printing | PMMA/UV-curable epoxy/PMMA | 60 × 60 | MM | 0.12 (λ = 850 nm) | [95] |
| Hot embossing | PMMA/SB40/PMMA | 100 × 60 | - | 6.4 (λ = 850 nm) | [97] |
| Hot embossing | ZP2145M/ZP1010M/ZP2145M | 7 × 7 | SM | 0.67 (λ = 1.55 μm) | [98] |
| Hot embossing | PMMA/WIR30-106/ZPU12-450 | 7 × 7 | SM | 0.83 (λ = 1.55 μm) | [99] |
| PMMA/UV-curable resin/PMMA | 43 × 43 | MM | 0.2 (λ = 850 nm) | ||
| Thermal NIL | Si/Teflon/PS | 0.4 × 0.245 | SM | - | [73] |
| UV NIL | SiO2/mr-L6000/PMMA | (60–100) × 80 | MM | 1.6 (λ = 1.31 μm) | [102] |
| SiO2/NOA81/PMMA | - | ||||
| R2P UV NIL | Lumogen OVD Varnish 311/OrmoClear/Lumogen OVD Varnish 311 | 50 × 50 | MM | 0.63 (λ = 532 nm), 0.54 (λ = 650 nm), 0.43 (λ = 850 nm), 0.56 (λ = 1.31 μm), 1.34 (λ = 1.55 μm) | [103] |
4. Additive Methods
4.1. Mosquito Method
4.2. Inkjet Printing
4.3. Aerosol Jet Printing and Flexographic Printing
4.4. Electrohydrodynamic (EHD) Jet Printing
| Fabrication Method | Material (Lower Cladding/Core/ Upper Cladding) | Core Dimensions (µm) | SM/MM | Propagation Losses (dB/cm) | Ref. |
|---|---|---|---|---|---|
| Mosquito method | FX-W713/FXW712/FX-W713 | ∅ 40 | MM | 0.033 (λ = 850 nm), 0.34 (λ = 1.31 μm), 1.25 (λ = 1.55 μm) | [105] |
| Mosquito method | NP-211/NP-005/NP-211 | ∅ 7.9 | SM | 0.29 (λ = 1.31 μm), 0.45 (λ = 1.55 μm) | [110] |
| Mosquito method | Polymer J + S/Ormocore/Polymer J + S | ∅ 12–44 | - | - | [109] |
| Inkjet printing | PMMA/Syntholux+ EGDMA/Syntholux+ EGDMA | 145 × 20 | - | 1.4 ± 0.4 (λ = 785 nm) | [127] |
| Inkjet printing | Truemode (cured)/Truemode/Truemode (cured) | 50–75 × 7 | - | - | [122] |
| Inkjet printing | NOA65/SU-8/NOA65 | 35 × 1.58 | - | - | [132] |
| Inkjet printing | InkOrmo/InkEpo/InkOrmo | 100 × 10 | MM | - | [123] |
| PVC/InkEpo/Air | 100 × 20 | ||||
| Inkjet printing | PDMS/Genomer resin/PDMS | 80 × 32 | - | - | [133] |
| Direct ink writing | PDMS/PMMA/PDMS | 175 × 55 | MM | 0.21 (λ = 980 nm), 0.42 (λ = 1.31 μm), 1.08 (λ = 1.55 μm) | [129] |
| Aerosol jet + flexographic | PMMA/J + S 390119/Air | 200 × 30 | MM | 0.2 (best case), 0.55 (average) (λ = 850 nm) | [143] |
| EHD jet printing | Au-coated Si/NOA164/NOA1375 | 7 × ? | - | - | [164] |
| Coaxial EHD jet printing | Acetate/PAA + water doped with RhB/PAA + water | 118 × 18 | - | - | [171] |
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osgood, R.; Meng, X. Principles of Photonic Integrated Circuits; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lifante, G. Integrated Photonics: Fundamentals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Wosinski, L.; Thylén, L. Integrated Photonics in the 21st Century. Photonics Res. 2014, 2, 75–81. [Google Scholar] [CrossRef]
- Li, H.H. Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Panda, S.; Ranade, R.; Swami Mathad, G.; Karouta, F. A Practical Approach to Reactive Ion Etching. J. Phys. D Appl. Phys. 2014, 47, 233501. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Colli, A.; Fasoli, A.; Luo, J.K.; Flewitt, A.J.; Ferrari, A.C.; Milne, W.I. Deep Reactive Ion Etching as a Tool for Nanostructure Fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 1520–1526. [Google Scholar] [CrossRef]
- Carlsson, J.O.; Martin, P.M. Chemical Vapor Deposition. In Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology; William Andrew: Norwich, NY, USA, 2009; pp. 314–363. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Eldada, L.; Shacklette, L.W. Advances in Polymer Integrated Optics. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- Zhou, M. Low-Loss Polymeric Materials for Passive Waveguide Components in Fiber Optical Telecommunication. Opt. Eng. 2002, 41, 7. [Google Scholar] [CrossRef]
- Lin, Y.; Bilotti, E.; Bastiaansen, C.W.M.; Peijs, T. Transparent Semi-Crystalline Polymeric Materials and Their Nanocomposites: A Review. Polym. Eng. Sci. 2020, 60, 2351–2376. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, T.; Liu, W.; Li, M.; Zang, Q.; Ye, C.; Sun, J.Z.; Shi, Y.; Ling, J.; Qin, A.; et al. All-Organic Polymeric Materials with High Refractive Index and Excellent Transparency. Nat. Commun. 2023, 14, 1–8. [Google Scholar] [CrossRef]
- Dangel, R.; Horst, F.; Jubin, D.; Meier, N.; Weiss, J.; Offrein, B.J.; Swatowski, B.W.; Amb, C.M.; Deshazer, D.J.; Weidner, W.K. Development of Versatile Polymer Waveguide Flex Technology for Use in Optical Interconnects. J. Light. Technol. 2013, 31, 3915–3926. [Google Scholar] [CrossRef]
- Yue, X.; Lu, R.; Yang, Q.; Song, E.; Jiang, H.; Ran, Y.; Guan, B.O. Flexible Wearable Optical Sensor Based on Optical Microfiber Bragg Grating. J. Light. Technol. 2023, 41, 1858–1864. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Z.; Pan, J.; Wang, Y.; Zhang, L.; Tong, L. Finger-Skin-Inspired Flexible Optical Sensor for Force Sensing and Slip Detection in Robotic Grasping. Adv. Mater. Technol. 2021, 6, 2100285. [Google Scholar] [CrossRef]
- Sathish, K.; Kumar, S.S.; Magal, R.T.; Selvaraj, V.; Narasimharaj, V.; Karthikeyan, R.; Sabarinathan, G.; Tiwari, M.; Kassa, A.E. A Comparative Study on Subtractive Manufacturing and Additive Manufacturing. Adv. Mater. Sci. Eng. 2022, 2022, 6892641. [Google Scholar] [CrossRef]
- Newman, S.T.; Zhu, Z.; Dhokia, V.; Shokrani, A. Process Planning for Additive and Subtractive Manufacturing Technologies. CIRP Ann. 2015, 64, 467–470. [Google Scholar] [CrossRef]
- Grzesik, W. Hybrid Additive and Subtractive Manufacturing Processes and Systems: A Review. J. Mach. Eng. 2018, 18, 5–24. [Google Scholar] [CrossRef]
- Hansen, H.N.; Hocken, R.J.; Tosello, G. Replication of Micro and Nano Surface Geometries. CIRP Ann. 2011, 60, 695–714. [Google Scholar] [CrossRef]
- Srivastava, V.; Chester, S.A.; Ames, N.M.; Anand, L. A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition. Int. J. Plast. 2010, 26, 1138–1182. [Google Scholar] [CrossRef]
- Sharma, E.; Rathi, R.; Misharwal, J.; Sinhmar, B.; Kumari, S.; Dalal, J.; Kumar, A. Evolution in Lithography Techniques: Microlithography to Nanolithography. Nanomaterials 2022, 12, 2754. [Google Scholar] [CrossRef]
- Pease, R.F.; Chou, S.Y. Lithography and Other Patterning Techniques for Future Electronics. Proc. IEEE 2008, 96, 248–270. [Google Scholar] [CrossRef]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105, 1171–1196. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.P. Advances in Patterning Materials for 193 nm Immersion Lithography. Chem. Rev. 2010, 110, 321–360. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.H. Trends and Frontiers of MEMS. Sens. Actuators A Phys. 2007, 136, 62–67. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X.; Sutherland, D.; Bochenkov, V.; Deng, S. Nanofabrication of Nanostructure Lattices: From High-Quality Large Patterns to Precise Hybrid Units. Int. J. Extrem. Manuf. 2024, 6, 062004. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, S. Pushing the Limits of Lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef]
- Mack, C.A. The New, New Limits of Optical Lithography. In Proceedings of the SPIE, Volume 5374, Emerging Lithographic Technologies VIII, Santa Clara, CA, USA, 22–27 February 2004; pp. 1–8. [Google Scholar] [CrossRef]
- Okazaki, S. Resolution Limits of Optical Lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1991, 9, 2829–2833. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yano, K.; Itoh, M.; Ito, M. Chapter 13 Photolithography. In Flat Panel Display Manufacturing; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 287–310. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Black, A.J.; Whitesides, G.M. Photolithography with Transparent Reflective Photomasks. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 98–103. [Google Scholar] [CrossRef]
- Wu, C.Y.; Hsieh, H.; Lee, Y.C. Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask. Micromachines 2019, 10, 547. [Google Scholar] [CrossRef]
- Jain, K.; Willson, C.G.; Lin, B.J. Ultrafast High-Resolution Contact Lithography with Excimer Lasers. IBM J. Res. Dev. 1982, 26, 151–159. [Google Scholar] [CrossRef]
- Kawata, H.; Carter, J.M.; Yen, A.; Smith, H.I. Optical Projection Lithography Using Lenses with Numerical Apertures Greater than Unity. Microelectron. Eng. 1989, 9, 31–36. [Google Scholar] [CrossRef]
- Rothschild, M. Projection Optical Lithography. Mater. Today 2005, 8, 18–24. [Google Scholar] [CrossRef]
- Doise, J.; Bekaert, J.; Chan, B.T.; Hori, M.; Gronheid, R. Via Patterning in the 7-nm Node Using Immersion Lithography and Graphoepitaxy Directed Self-Assembly. J. Micro/Nanolithography MEMS MOEMS 2017, 16, 023506. [Google Scholar] [CrossRef]
- Lin, B.J. Making Lithography Work for the 7-nm Node and beyond in Overlay Accuracy, Resolution, Defect, and Cost. Microelectron. Eng. 2015, 143, 91–101. [Google Scholar] [CrossRef]
- Wu, B.; Kumar, A. Extreme Ultraviolet Lithography: A Review. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 1743–1761. [Google Scholar] [CrossRef]
- Pirati, A.; Peeters, R.; Smith, D.; Lok, S.; Martijn, V.N.; Noordenburg, M.; Roderik, V.E.; Verhoeven, E.; Meijer, H.; Minnaert, A.; et al. EUV Lithography Performance for Manufacturing: Status and Outlook. In Proceedings of the SPIE Volume 9776, Extreme Ultraviolet (EUV) Lithography VII, San Jose, CA, USA, 21–25 February 2016; pp. 78–92. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Yang, Y.; Zhao, Y. A Photolithography Process Design for 5 nm Logic Process Flow. J. Microelectron. Manuf. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Smith, B.W.; Suzuki, K. Microlithography: Science and Technology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781315219554. [Google Scholar]
- Kim, E.; Kim, T.; Lee, D.; Kim, H.; Kim, S.; Kim, J.; Kim, W.; Kim, E.; Jin, Y.; Lee, T.E. Practical Reinforcement Learning for Adaptive Photolithography Scheduler in Mass Production. IEEE Trans. Semicond. Manuf. 2024, 37, 16–26. [Google Scholar] [CrossRef]
- Ghasemi, A.; Azzouz, R.; Laipple, G.; Kabak, K.E.; Heavey, C. Optimizing Capacity Allocation in Semiconductor Manufacturing Photolithography Area–Case Study: Robert Bosch. J. Manuf. Syst. 2020, 54, 123–137. [Google Scholar] [CrossRef]
- Del Barrio, J.; Sánchez-Somolinos, C. Light to Shape the Future: From Photolithography to 4D Printing. Adv. Opt. Mater. 2019, 7, 1900598. [Google Scholar] [CrossRef]
- Del Campo, A.; Greiner, C. SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography. J. Micromechanics Microengineering 2007, 17, R81. [Google Scholar] [CrossRef]
- Tung, K.K.; Wong, W.H.; Pun, E.Y.B. Polymeric Optical Waveguides Using Direct Ultraviolet Photolithography Process. Appl. Phys. A Mater. Sci. Process 2005, 80, 621–626. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, H.; Li, T.; Ouyang, X.; Shi, Y.; Zhang, A.P. Fabrication of Polymer Optical Waveguides by Digital Ultraviolet Lithography. J. Light. Technol. 2022, 40, 163–169. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhang, K.; Wu, J.; Wong, D.S.H.; Feng, Q.; Bian, L.; Zhang, A.P. Optical Μ-Printing of Cellular-Scale Microscaffold Arrays for 3D Cell Culture. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Kim, C.S.; Kim, K.; Choi, J.-r. Emerging Applications of Digital Micromirror Devices in Biophotonic Fields. Opt. Laser Technol. 2018, 104, 17–25. [Google Scholar] [CrossRef]
- Nam, S.H.; Kang, J.W.; Kim, J.J. Direct Pattering of Polymer Optical Waveguide Using Liquid State UV-Curable Polymer. Macromol. Res. 2006, 14, 114–116. [Google Scholar] [CrossRef]
- Chiang, K.S. Development of Optical Polymer Waveguide Devices. In Proceedings of the SPIE Volume 7605, Optoelectronic Integrated Circuits XII, San Jose, CA, USA, 23–28 January 2010; pp. 41–58. [Google Scholar] [CrossRef]
- Kane, C.F.; Krchnavek, R.R. Benzocyclobutene Optical Waveguides. IEEE Photonics Technol. Lett. 1995, 7, 535–537. [Google Scholar] [CrossRef]
- Chiang, K.S.; Lor, K.P.; Liu, Q.; Chan, H.P. UV-Written Buried Waveguides in Benzocyclobutene. In Proceedings of the SPIE Volume 6351, Passive Components and Fiber-based Devices III, Gwangju, Republic of Korea, 3–7 September 2006; pp. 410–417. [Google Scholar] [CrossRef]
- Lor, K.P.; Chiang, K.-S.; Liu, Q.; Chan, H.P. Ultraviolet Writing of Buried Waveguide Devices in Epoxy-Coated Benzocyclobutene. Opt. Eng. 2009, 48, 044601. [Google Scholar] [CrossRef]
- Yang, G.; Shen, Y. Laser Direct Writing System and Its Lithography Properties. In Proceedings of the SPIE Volume 3550, Laser Processing of Materials and Industrial Applications II, Beijing, China, 16–19 September 1998; pp. 409–418. [Google Scholar] [CrossRef]
- Pease, R.F.W. Electron Beam Ilthography. Contemp. Phys. 1981, 22, 265–290. [Google Scholar] [CrossRef]
- Altissimo, M. E-Beam Lithography for Micro-/Nanofabrication. Biomicrofluidics 2010, 4, 026503. [Google Scholar] [CrossRef]
- Anscombe, N. Direct Laser Writing. Nat. Photonics 2010, 4, 22–23. [Google Scholar] [CrossRef]
- Wu, Z.L.; Qi, Y.N.; Yin, X.J.; Yang, X.; Chen, C.M.; Yu, J.Y.; Yu, J.C.; Lin, Y.M.; Hui, F.; Liu, P.L.; et al. Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology. Polymers 2019, 11, 553. [Google Scholar] [CrossRef]
- Thiel, M.; Wegener, M.; Mueller, P. 3D Direct Laser Writing Using a 405 nm Diode Laser. Opt. Lett. 2014, 39, 6847–6850. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Schianti, J.N.; Almeida, M.G.; Pavani, A.; Panepucci, R.R.; Hernandez-figueroa, H.E.; Gabrielli, L.H.; Melikyan, A.; Alloatti, L.; Muslija, A.; et al. Low-Loss Modified SU-8 Waveguides by Direct Laser Writing at 405 nm. Opt. Mater. Express 2017, 7, 2651–2659. [Google Scholar] [CrossRef]
- Wei, H.; Krishnaswamy, S. Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors. IEEE Photonics Technol. Lett. 2016, 28, 2819–2822. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Wei, H. Polymer Micro-Ring Resonator Integrated with a Fiber Ring Laser for Ultrasound Detection. Opt. Lett. 2017, 42, 2655–2658. [Google Scholar] [CrossRef] [PubMed]
- Broers, A.N.; Hoole Andrew, A.C.F.; Ryan, J.M. Electron Beam Lithography—Resolution Limits. Microelectron. Eng. 1996, 32, 131–142. [Google Scholar] [CrossRef]
- Broers, A.N. Resolution Limits for Electron-Beam Lithography. IBM J. Res. Dev. 1988, 32, 502–513. [Google Scholar] [CrossRef]
- Cumming, D.R.S.; Thoms, S.; Beaumont, S.P.; Weaver, J.M.R. Fabrication of 3 nm Wires Using 100 KeV Electron Beam Lithography and Poly(Methyl Methacrylate) Resist. Appl. Phys. Lett. 1996, 68, 322–324. [Google Scholar] [CrossRef]
- Manheller, M.; Trellenkamp, S.; Waser, R.; Karthäuser, S. Reliable Fabrication of 3 nm Gaps between Nanoelectrodes by Electron-Beam Lithography. Nanotechnology 2012, 23, 125302. [Google Scholar] [CrossRef]
- Xin, Y.; Pandraud, G.; Zhang, Y.; French, P. Single-Mode Tapered Vertical SU-8 Waveguide Fabricated by E-Beam Lithography for Analyte Sensing. Sensors 2019, 19, 3383. [Google Scholar] [CrossRef]
- Huang, Y.; Paloczi, G.T.; Yariv, A.; Zhang, C.; Dalton, L.R. Fabrication and Replication of Polymer Integrated Optical Devices Using Electron-Beam Lithography and Soft Lithography. J. Phys. Chem. B 2004, 108, 8606–8613. [Google Scholar] [CrossRef]
- Wong, W.H.; Zhou, J.; Pun, E.Y.B. Low-Loss Polymeric Optical Waveguides Using Electron-Beam Direct Writing. Appl. Phys. Lett. 2001, 78, 2110–2112. [Google Scholar] [CrossRef]
- Kehagias, N.; Zankovych, S.; Goldschmidt, A.; Kian, R.; Zelsmann, M.; Torres, C.M.S.; Pfeiffer, K.; Ahrens, G.; Gruetzner, G. Embedded Polymer Waveguides: Design and Fabrication Approaches. Superlattices Microstruct. 2004, 36, 201–210. [Google Scholar] [CrossRef]
- Russo, R.E.; Mao, X.L.; Yoo, J.; Gonzalez, J.J. Laser Ablation. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; pp. 41–70. [Google Scholar] [CrossRef]
- Stafe, M.; Marcu, A.; Puscas, N.N. Pulsed Laser Ablation of Solids; Springer: Berlin/Heidelberg, Germany, 2014; Volume 53. [Google Scholar] [CrossRef]
- Ahmed, N.; Darwish, S.; Alahmari, A.M. Laser Ablation and Laser-Hybrid Ablation Processes: A Review. Mater. Manuf. Process. 2016, 31, 1121–1142. [Google Scholar] [CrossRef]
- Ravi-Kumar, S.; Lies, B.; Lyu, H.; Qin, H. Laser Ablation of Polymers: A Review. Procedia Manuf. 2019, 34, 316–327. [Google Scholar] [CrossRef]
- Van Steenberge, G.; Hendrickx, N.; Bosman, E.; Van Erps, J.; Thienpont, H.; Van Daele, P. Laser Ablation of Parallel Optical Interconnect Waveguides. IEEE Photonics Technol. Lett. 2006, 18, 1106–1108. [Google Scholar] [CrossRef]
- Zakariyah, S.S.; Conway, P.P.; Hutt, D.A.; Selviah, D.R.; Wang, K.; Baghsiahi, H.; Rygate, J.; Calver, J.; Kandulski, W. Polymer Optical Waveguide Fabrication Using Laser Ablation. In Proceedings of the 11th Electronic Packaging Technology Conference EPTC, Singapore, 9–11 December 2009; pp. 936–941. [Google Scholar] [CrossRef]
- Lizarraga-Medina, E.G.; Castillo, G.R.; Jurado, J.A.; Caballero-Espitia, D.L.; Camacho-Lopez, S.; Contreras, O.; Santillan, R.; Marquez, H.; Tiznado, H. Optical Waveguides Fabricated in Atomic Layer Deposited Al2O3 by Ultrafast Laser Ablation. Results Opt. 2021, 2, 100060. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Goswami, A. Hot Embossing of Polymers—A Review. Mater. Today Proc. 2020, 26, 405–414. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Goswami, A. Recent Developments in Hot Embossing—A Review. Mater. Manuf. Process. 2021, 36, 501–543. [Google Scholar] [CrossRef]
- Heckele, M.; Bacher, W.; Müller, K.D. Hot Embossing—The Molding Technique for Plastic Microstructures. Microsyst. Technol. 1998, 4, 122–124. [Google Scholar] [CrossRef]
- Velten, T.; Bauerfeld, F.; Schuck, H.; Scherbaum, S.; Landesberger, C.; Bock, K. Roll-to-Roll Hot Embossing of Microstructures. Microsyst. Technol. 2011, 17, 619–627. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Shu, Y.; Yi, P.; Deng, Y.; Lai, X. Roll-to-Roll Hot Embossing System with Shape Preserving Mechanism for the Large-Area Fabrication of Microstructures. Rev. Sci. Instrum. 2016, 87, 105120. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Applications of Nanoimprint Lithography/Hot Embossing: A Review. Appl. Phys. A 2015, 121, 451–465. [Google Scholar] [CrossRef]
- Unno, N.; Mäkelä, T. Thermal Nanoimprint Lithography—A Review of the Process, Mold Fabrication, and Material. Nanomaterials 2023, 13, 2031. [Google Scholar] [CrossRef]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of Sub-25 nm Vias and Trenches in Polymers. Appl. Phys. Lett. 1995, 67, 3114–3116. [Google Scholar] [CrossRef]
- Kooy, N.; Mohamed, K.; Pin, L.T.; Guan, O.S. A Review of Roll-to-Roll Nanoimprint Lithography. Nanoscale Res. Lett. 2014, 9, 320. [Google Scholar] [CrossRef]
- Lan, H.; Liu, H. UV-Nanoimprint Lithography: Structure, Materials and Fabrication of Flexible Molds. J. Nanosci. Nanotechnol. 2013, 13, 3145–3172. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, O.; Hosino, M.; Kaino, T.; Okamoto, N.; Mizuno, H. Low-Loss Polymeric Optical Waveguides with Large Cores Fabricated by Hot Embossing. Opt. Lett. 2003, 28, 2378–2380. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Y.; Li, B.; Zhou, P. Machinability of the Thermoplastic Polymers: PEEK, PI, and PMMA. Polymers 2021, 13, 69. [Google Scholar] [CrossRef]
- Rezem, M.; Günther, A.; Rahlves, M.; Roth, B.; Reithmeier, E. Fabrication and Sensing Applications of Multilayer Polymer Optical Waveguides. Procedia Technol. 2016, 26, 517–523. [Google Scholar] [CrossRef]
- Keun, B.Y. Fabrication of Multimode Polymeric Waveguides by Hot Embossing Process: Effect of Sidewall Roughness on Insertion Loss. Macromol. Res. 2004, 12, 437–442. [Google Scholar] [CrossRef]
- Keun, B.Y. Low-Loss Polymeric Waveguides Having Large Cores Fabricated by Hot Embossing and Micro-Contact Printing Techniques. Macromol. Res. 2004, 12, 474–477. [Google Scholar] [CrossRef]
- Schift, H.; Kristensen, A. Nanoimprint Lithography. Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 113–142. [Google Scholar] [CrossRef]
- Rezem, M.; Günther, A.; Rahlves, M.; Roth, B.; Reithmeier, E. Hot Embossing of Polymer Optical Waveguides for Sensing Applications. Procedia Technol. 2014, 15, 514–520. [Google Scholar] [CrossRef]
- Choi, C.G. Fabrication of Optical Waveguides in Thermosetting Polymers Using Hot Embossing. J. Micromech. Microeng. 2004, 14, 945. [Google Scholar] [CrossRef]
- Choi, C.G.; Kim, J.T.; Han, S.P.; Ahn, S.H. Hot-Embossed Polymeric Optical Waveguides. In Proceedings of the SPIE Volume 5595, Active and Passive Optical Components for WDM Communications IV, Philadelphia, PA, USA, 25–28 October 2004; pp. 98–111. [Google Scholar] [CrossRef]
- Grego, S.; Huffman, A.; Lueck, M.; Stoner, B.R.; Lannon, J. Nanoimprint Lithography Fabrication of Waveguide-Integrated Optical Gratings with Inexpensive Stamps. Microelectron. Eng. 2010, 87, 1846–1851. [Google Scholar] [CrossRef]
- Diez Garcia, M.; Raimbault, V.; Joly, S.; Oyhenart, L.; Bilbao, L.; Nguyen, C.T.; Ledoux-Rak, I.; Bechou, L.; Obieta, I.; Dejous, C. Enabling Patterning of Polymer Optical Devices Working at Visible Wavelength Using Thermal Nano-Imprint Lithography. In Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP, Bordeaux, France, 29 May–1 June 2017. [Google Scholar] [CrossRef]
- Weng, Y.J.; Weng, Y.C.; Yang, S.Y.; Wang, L.A. Fabrication of Optical Waveguide Devices Using Gas-Assisted UV Micro/Nanoimprinting with Soft Mold. Polym. Adv. Technol. 2007, 18, 876–882. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Kulha, P.; Neruda, M.; Kopp, S.; Mühlberger, M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials 2021, 11, 724. [Google Scholar] [CrossRef]
- Berni, A.; Mennig, M.; Schmidt, H. Doctor Blade. In Sol-Gel Technologies for Glass Producers and Users; Aegerter, M.A., Mennig, M., Eds.; Springer: Boston, MA, USA, 2004; pp. 89–92. [Google Scholar] [CrossRef]
- Soma, K.; Ishigure, T. Fabrication of a Graded-Index Circular-Core Polymer Parallel Optical Waveguide Using a Microdispenser for a High-Density Optical Printed Circuit Board. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 3600310. [Google Scholar] [CrossRef]
- Kinoshita, R.; Suganuma, D.; Ishigure, T.; A Pitwon, R.C.; Wang, K.; Graham-Jones, J.; Papakonstantinou, I.; Baghsiahi, H.; Offrein, B.J.; Dangel, R.; et al. Accurate Interchannel Pitch Control in Graded-Index Circular-Core Polymer Parallel Optical Waveguide Using the Mosquito Method. Optics Express 2014, 22, 8426–8437. [Google Scholar] [CrossRef][Green Version]
- Saito, Y.; Fukagata, K.; Ishigure, T. Low-Loss Polymer Optical Waveguides with Graded-Index Perfect Circular Cores for on-Board Interconnection. In Proceedings of the SPIE Volume 9750, Integrated Optics: Devices, Materials, and Technologies XX, San Francisco, CA, USA, 13–18 February 2016; p. 975005. [Google Scholar] [CrossRef]
- Varela, F.; Armendáriz, E.; Wolluschek, C. Inkjet Printed Electronics: The Wet on Wet Approach. Chem. Eng. Process. Process Intensif. 2011, 50, 589–591. [Google Scholar] [CrossRef]
- Zander, C.; Fütterer, L.; Olsen, E.; Hohenhoff, G.; Jäschke, P.; Kaierle, S.; Overmeyer, L. Characterization of Polymer Waveguides in Cavities on 3D Substrates Manufactured Using the Mosquito Method. In Proceedings of the Lasers in Manufacturing Conference, Munich, Germany, 26–29 June 2023. [Google Scholar]
- Yasuhara, K.; Ishigure, T.; Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; La Porta, A.; Meier, N.; Soganci, I.M.; Weiss, J.; et al. Circular Core Single-Mode Polymer Optical Waveguide Fabricated Using the Mosquito Method with Low Loss at 1310/1550 nm. Opt. Express 2017, 25, 8524–8533. [Google Scholar] [CrossRef]
- Rasel, O.F.; Ishigure, T. Circular Core Single-Mode 3-Dimensional Crossover Polymer Waveguides Fabricated with the Mosquito Method. Opt. Express 2019, 27, 32465–32479. [Google Scholar] [CrossRef]
- Suganuma, D.; Ishigure, T. Fan-in/out Polymer Optical Waveguide for a Multicore Fiber Fabricated Using the Mosquito Method. Opt. Express 2015, 23, 1585–1593. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yasuhara, K.; Ishigure, T.; Sakaguchi, Y. Mosquito Method Based Polymer Tapered Waveguide as a Spot Size Converter. Opt. Express 2021, 29, 9513–9531. [Google Scholar] [CrossRef] [PubMed]
- Hatai, R.; Hama, H.; Ishigure, T. Fabrication for Single/Few-Mode Y-Branch Waveguide Using the Mosquito Method. Opt. Express 2022, 30, 3524–3537. [Google Scholar] [CrossRef]
- Date, K.; Fukagata, K.; Ishigure, T. Core Position Alignment in Polymer Optical Waveguides Fabricated Using the Mosquito Method. Opt. Express 2018, 26, 15632–15641. [Google Scholar] [CrossRef]
- Ishigure, T.; Suganuma, D.; Soma, K. Three-Dimensional High Density Channel Integration of Polymer Optical Waveguide Using the Mosquito Method. In Proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 27–30 May 2014; pp. 1042–1047. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Wijshoff, H. Drop Dynamics in the Inkjet Printing Process. Curr. Opin. Colloid. Interface Sci. 2018, 36, 20–27. [Google Scholar] [CrossRef]
- Alamán, J.; Alicante, R.; Peña, J.I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials 2016, 9, 910. [Google Scholar] [CrossRef] [PubMed]
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Wu, L.; Dong, Z.; Li, F.; Zhou, H.; Song, Y. Emerging Progress of Inkjet Technology in Printing Optical Materials. Adv. Opt. Mater. 2016, 4, 1915–1932. [Google Scholar] [CrossRef]
- Chappell, J.; Hutt, D.A.; Conway, P.P. Variation in the Line Stability of an Inkjet Printed Optical Waveguide-Applicable Material. In Proceedings of the 2008 2nd Electronics System-Integration Technology Conference, Greenwich, UK, 1–4 September 2008; pp. 1267–1272. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Printing and Preparation of Integrated Optical Waveguides for Optronic Sensor Networks. Mechatronics 2016, 34, 119–127. [Google Scholar] [CrossRef]
- Wang, R.-J.; Wang, C.-M. Effective Wet-in-Wet Flow Synthesis for Ink Diffusion. J. Inf. Sci. Eng. 2010, 26, 1397–1411. [Google Scholar] [CrossRef]
- Podhajny, R.M. Corona Treatment of Polymeric Films. J. Plast. Film. Sheeting 1988, 4, 177–188. [Google Scholar] [CrossRef]
- Grace, J.M.; Gerenser, L.J. Plasma Treatment of Polymers. J. Dispers. Sci. Technol. 2003, 24, 305–341. [Google Scholar] [CrossRef]
- Bollgruen, P.; Wolfer, T.; Gleissner, U.; Mager, D.; Megnin, C.; Overmeyer, L.; Hanemann, T.; Korvink, J.G. Ink-Jet Printed Optical Waveguides. Flex. Print. Electron. 2017, 2, 045003. [Google Scholar] [CrossRef]
- Klestova, A.; Cheplagin, N.; Keller, K.; Slabov, V.; Zaretskaya, G.; Vinogradov, A.V. Inkjet Printing of Optical Waveguides for Single-Mode Operation. Adv. Opt. Mater. 2019, 7, 1801113. [Google Scholar] [CrossRef]
- Lin, C.; Lin, C.; Lin, C.; Jia, X.; Chen, C.; Yang, C.; Li, X.; Li, X.; Li, X.; Shao, M.; et al. Direct Ink Writing 3D-Printed Optical Waveguides for Multi-Layer Interconnect. Opt. Express 2023, 31, 11913–11922. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Shajedul Hoque Thakur, M.; Md Ikram, M.; John Hart, A.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef]
- Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Mater. Adv. 2021, 2, 540–563. [Google Scholar] [CrossRef]
- Vacirca, N.A.; Kurzweg, T.P. Inkjet Printing Techniques for the Fabrication of Polymer Optical Waveguides. In Proceedings of the SPIE Volume 7591, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III, San Francisco, CA, USA, 23–28 January 2010; pp. 61–68. [Google Scholar] [CrossRef]
- Samusjew, A.; Kratzer, M.; Moser, A.; Teichert, C.; Krawczyk, K.K.; Griesser, T. Inkjet Printing of Soft, Stretchable Optical Waveguides through the Photopolymerization of High-Profile Linear Patterns. ACS Appl. Mater. Interfaces 2017, 9, 4941–4947. [Google Scholar] [CrossRef] [PubMed]
- Hamjah, M.K.; Zeitler, J.; Eiche, Y.; Lorenz, L.; Backhaus, C.; Hoffmann, G.A.; Wienke, A.; Kaierle, S.; Overmeyer, L.; Lindlein, N.; et al. Manufacturing of Polymer Optical Waveguides for 3D-Opto-MID: Review of the OPTAVER Process. In Proceedings of the 2021 14th International Congress: Molded Interconnect Devices, MID, Amberg, Germany, 8–11 February 2021. [Google Scholar] [CrossRef]
- Reitberger, T.; Hoffmann, G.-A.; Wolfer, T.; Overmeyer, L.; Franke, J. Printing Polymer Optical Waveguides on Conditioned Transparent Flexible Foils by Using the Aerosol Jet Technology. In Proceedings of the SPIE Organic Photonics + Electronics, SPIE, San Diego, CA, USA, 28 August–1 September 2016; Volume 9945, pp. 18–24. [Google Scholar]
- Secor, E.B. Principles of Aerosol Jet Printing. Flex. Print. Electron. 2018, 3, 035002. [Google Scholar] [CrossRef]
- Fisher, C.; Skolrood, L.N.; Li, K.; Joshi, P.C.; Aytug, T. Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Adv. Mater. Technol. 2023, 8, 2300030. [Google Scholar] [CrossRef]
- Wilkinson, N.J.; Smith, M.A.A.; Kay, R.W.; Harris, R.A. A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105, 4599–4619. [Google Scholar] [CrossRef]
- Reitberger, T.; Hoerber, J.; Schramm, R.; Sennefelder, S.; Franke, J. Aerosol Jet® Printing of Optical Waveguides. In Proceedings of the 2015 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, 6–10 May 2015; pp. 5–10. [Google Scholar] [CrossRef]
- Reitberger, T.; Loosen, F.; Schrauf, A.; Lindlein, N.; Franke, J. Important Parameters of Printed Polymer Optical Waveguides (POWs) in Simulation and Fabrication. In Proceedings of the SPIE OPTO, SPIE, San Francisco, CA, USA, 28 January–2 February 2017; Volume 10098, pp. 231–239. [Google Scholar]
- Reitberger, T.; Franke, J.; Hoffmann, G.A.; Overmeyer, L.; Lorenz, L.; Wolter, K.J. Integration of Polymer Optical Waveguides by Using Flexographic and Aerosol Jet Printing. In Proceedings of the 2016 12th International Congress Molded Interconnect Devices (MID), Wuerzburg, Germany, 28–29 September 2016. [Google Scholar] [CrossRef]
- Assaifan, A.K. Flexographic Printing Contributions in Transistors Fabrication. Adv. Eng. Mater. 2021, 23, 2001410. [Google Scholar] [CrossRef]
- Lorenz, L.; Nieweglowski, K.; Al-Husseini, Z.; Neumann, N.; Plettemeier, D.; Reitberger, T.; Franke, J.; Bock, K. Aerosol Jet Printed Optical Waveguides for Short Range Communication. J. Light. Technol. 2020, 38, 3478–3484. [Google Scholar] [CrossRef]
- Lorenz, L.; Nieweglowski, K.; Wolter, K.J.; Bock, K.; Hoffmann, G.A.; Overmeyer, L.; Reitberger, T.; Franke, J. Additive Waveguide Manufacturing for Optical Bus Couplers by Aerosol Jet Printing Using Conditioned Flexible Substrates. In Proceedings of the 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, Poland, 10–13 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Morad, M.R.; Rajabi, A.; Razavi, M.; Pejman Sereshkeh, S.R. A Very Stable High Throughput Taylor Cone-Jet in Electrohydrodynamics. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Mkhize, N.; Bhaskaran, H. Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations. Small Sci. 2022, 2, 2100073. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Sun, Y.; Wang, Z.; Yang, W.; Li, X.; Yu, H. Mechanisms, Influencing Factors, and Applications of Electrohydrodynamic Jet Printing. Nanotechnol. Rev. 2021, 10, 1046–1078. [Google Scholar] [CrossRef]
- Onses, M.S.; Sutanto, E.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Kim, Y.J.; Son, S.U.; An, K.C. High Aspect Ratio EHD Printing with High Viscosity Ink Ejection. In Proceedings of the Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, Santa Clara, CA, USA, 18–21 June 2012. [Google Scholar]
- Sutanto, E.; Shigeta, K.; Kim, Y.K.; Graf, P.G.; Hoelzle, D.J.; Barton, K.L.; Alleyne, A.G.; Ferreira, P.M.; Rogers, J.A. A Multimaterial Electrohydrodynamic Jet (E-Jet) Printing System. J. Micromech. Microeng. 2012, 22, 045008. [Google Scholar] [CrossRef]
- Barton, K.; Mishra, S.; Shorter, K.A.; Alleyne, A.; Ferreira, P.; Rogers, J. A Desktop Electrohydrodynamic Jet Printing System. Mechatronics 2010, 20, 611–616. [Google Scholar] [CrossRef]
- Wang, J.C.; Chang, M.W.; Ahmad, Z.; Li, J.S. Fabrication of Patterned Polymer-Antibiotic Composite Fibers via Electrohydrodynamic (EHD) Printing. J. Drug Deliv. Sci. Technol. 2016, 35, 114–123. [Google Scholar] [CrossRef]
- Park, J.U.; Hardy, M.; Kang, S.J.; Barton, K.; Adair, K.; Mukhopadhyay, D.K.; Lee, C.Y.; Strano, M.S.; Alleyne, A.G.; Georgiadis, J.G.; et al. High-Resolution Electrohydrodynamic Jet Printing. Nat. Mater. 2007, 6, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, H.; Umezu, S.; Koizumi, R. Fundamental Investigation on Electrostatic Ink Jet Phenomena in Pin-to-Plate Discharge System. J. Imaging Sci. Technol. 2005, 49, 19–27. [Google Scholar] [CrossRef]
- Phung, T.H.; Kim, S.; Kwon, K.S. A High Speed Electrohydrodynamic (EHD) Jet Printing Method for Line Printing. J. Micromechanics Microengineering 2017, 27, 095003. [Google Scholar] [CrossRef]
- Poellmann, M.J.; Barton, K.L.; Mishra, S.; Johnson, A.J.W. Patterned Hydrogel Substrates for Cell Culture with Electrohydrodynamic Jet Printing. Macromol. Biosci. 2011, 11, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Park, J.U.; Lee, J.H.; Paik, U.; Lu, Y.; Rogers, J.A. Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly. Nano Lett. 2008, 8, 4210–4216. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Rahman, K.; Shakeel, M.; Qasuria, T.A.K.; Cheema, T.A.; Khan, A. A Low-Cost Printed Humidity Sensor on Cellulose Substrate by EHD Printing. J. Mater. Res. 2021, 36, 3667–3678. [Google Scholar] [CrossRef]
- Kang, K.; Yang, D.; Park, J.; Kim, S.; Cho, I.; Yang, H.H.; Cho, M.; Mousavi, S.; Choi, K.H.; Park, I. Micropatterning of Metal Oxide Nanofibers by Electrohydrodynamic (EHD) Printing towards Highly Integrated and Multiplexed Gas Sensor Applications. Sens. Actuators B Chem. 2017, 250, 574–583. [Google Scholar] [CrossRef]
- Mkhize, N.; Murugappan, K.; Castell, M.R.; Bhaskaran, H. Electrohydrodynamic Jet Printed Conducting Polymer for Enhanced Chemiresistive Gas Sensors. J. Mater. Chem. C Mater. 2021, 9, 4591–4596. [Google Scholar] [CrossRef]
- Li, B.; Liang, W.; Ren, F. Electrohydrodynamic (EHD) Inkjet Printing Flexible Pressure Sensors with a Multilayer Structure and Periodically Patterned Ag Nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 18734–18750. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Lu, S.; Geng, X.; Guan, Y. Selective Detection of H2 by Pt-MCF/ZSA Bilayer Sensor Prepared in Situ via EHD Jet Printing. Sens. Actuators B Chem. 2024, 418, 136324. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Li, L.; Liu, J.; Guo, M.; Su, Z.; Duan, B.; Zhao, Y.; Sun, D.; Hai, Z. Electrohydrodynamic Printed Ultramicro AgNPs Thin-Film Temperature Sensor. IEEE Sens. J. 2023, 23, 21018–21028. [Google Scholar] [CrossRef]
- Sutanto, E.; Tan, Y.; Onses, M.S.; Cunningham, B.T.; Alleyne, A. Electrohydrodynamic Jet Printing of Micro-Optical Devices. Manuf. Lett. 2014, 2, 4–7. [Google Scholar] [CrossRef]
- Im, B.; Prasetyo, F.D.; Yudistira, H.T.; Khalil, S.M.; Cho, D.H.; Byun, D. Drop-on-Demand Electrohydrodynamic Jet Printing of Microlens Array on Flexible Substrates. ACS Appl. Polym. Mater. 2023, 5, 2264–2271. [Google Scholar] [CrossRef]
- Vespini, V.; Coppola, S.; Todino, M.; Paturzo, M.; Bianco, V.; Grilli, S.; Ferraro, P. Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices. Lab. Chip 2016, 16, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yu, H.; Zhou, P.; Wen, Y.; Zhao, W.; Zou, W.; Luo, H.; Wang, Y.; Liu, L. In Situ Electrohydrodynamic Jet Printing-Based Fabrication of Tunable Microlens Arrays. ACS Appl. Mater. Interfaces 2021, 13, 39550–39560. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Lin, Y.; Liang, J.; Ren, T.; Liu, Z.; Li, J. Nanoscale Coaxial Focused Electrohydrodynamic Jet Printing. Nanoscale 2018, 10, 9867–9879. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Lin, Y.; Sun, Y.; Ren, T.; Liang, J.; Madou, M. Numerical Simulation of Coaxial Electrohydrodynamic Jet and Printing Nanoscale Structures. Microsyst. Technol. 2019, 25, 4651–4661. [Google Scholar] [CrossRef]
- Li, Z.; Al-Milaji, K.N.; Zhao, H.; Chen, D.R. Ink Bridge Control in the Electrohydrodynamic Printing with a Coaxial Nozzle. J. Manuf. Process 2020, 60, 418–425. [Google Scholar] [CrossRef]
- Davila, R.B.; Matias, I.R.; Zabala, S.; Socorro-Leranoz, A.B.; Rivero, P.J.; Corres, J.M. Printed Optical Waveguide Temperature Sensor With Rhodamine-Doped Core. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Jia, E.; Xie, C.; Yang, Y.; Ma, X.; Sun, S.; Li, Y.; Zhang, X.; Hu, M. Additive and Subtractive Hybrid Manufacturing Assisted by Femtosecond Adaptive Optics. Photonics Res. 2024, 12, 2772–2783. [Google Scholar] [CrossRef]
- Huang, H.; Shi, Z.; Talli, G.; Kuschnerov, M.; Penty, R.; Cheng, Q.; Huang, H.; Shi, Z.; Talli, G.; Kuschnerov, M.; et al. Photonic Chiplet Interconnection via 3D-Nanoprinted Interposer. Light. Adv. Manuf. 2025, 5, 542–552. [Google Scholar] [CrossRef]
- Grabulosa, A.; Moughames, J.; Porte, X.; Brunner, D. Combining One and Two Photon Polymerization for Accelerated High Performance (3 + 1)D Photonic Integration. Nanophotonics 2022, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Lininger, A.; Aththanayake, A.; Boyd, J.; Ali, O.; Goel, M.; Jizhe, Y.; Hinczewski, M.; Strangi, G. Machine Learning to Optimize Additive Manufacturing for Visible Photonics. Nanophotonics 2023, 12, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Pflieger, K.; Pflieger, K.; Evertz, A.; Overmeyer, L.; Overmeyer, L. Deep Learning Approach to Predict Optical Attenuation in Additively Manufactured Planar Waveguides. Appl. Opt. 2024, 63, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, L.M.; Köhler, M.; Dreyer, C. Fluorinated Polymers for Photonics—From Optical Waveguides to Polymer-Clad Glass Optical Fibers. Appl. Sci. 2025, 15, 1790. [Google Scholar] [CrossRef]
- Haas, K.-H.; Schottner, G. Hybrid Inorganic–Organic Polymers. In Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: Hoboken, NJ, USA, 2021; pp. 1057–1068. [Google Scholar] [CrossRef]













| Methods Used | Process Approach | Accuracy and Resolution | Waveguide Width (µm) | Cost and Equipment Complexity | Flexibility in Design | Production Speed | Waste of Materials |
|---|---|---|---|---|---|---|---|
| Mask lithography | Subtractive | High | 2–10 | High | High | High-Medium | High |
| Maskless lithography | Subtractive | High | <1–10 | High | High | High-Medium | High |
| Laser ablation | Subtractive | Medium | 40–70 | Medium | High | Medium | High |
| Hot embossing | Replication | Medium | <10–100 | Medium-Low | Medium-Low | High | Low |
| Nanoimprint lithography | Replication | Medium | <1–100 | Medium-Low | Medium-Low | High | Low |
| Mosquito method | Additive | Medium | <10–40 | Medium-Low | High | Medium | Low |
| InkJet printing | Additive | Medium | 30–150 | Medium-Low | High | Medium | Low |
| Aerosol jet + flex. | Additive | Medium | 200–450 | Medium | Medium | Medium-Low | Low |
| EHD jet printing | Additive | Medium | <10–100 | Medium-Low | High | Medium | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, F.M.; Imas, J.J.; Ozcariz, A.; Elosua, C.; Corres, J.M.; Matias, I.R. Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes. Appl. Sci. 2025, 15, 10644. https://doi.org/10.3390/app151910644
Abreu FM, Imas JJ, Ozcariz A, Elosua C, Corres JM, Matias IR. Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes. Applied Sciences. 2025; 15(19):10644. https://doi.org/10.3390/app151910644
Chicago/Turabian StyleAbreu, Frank Martinez, José Javier Imas, Aritz Ozcariz, Cesar Elosua, Jesus M. Corres, and Ignacio R. Matias. 2025. "Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes" Applied Sciences 15, no. 19: 10644. https://doi.org/10.3390/app151910644
APA StyleAbreu, F. M., Imas, J. J., Ozcariz, A., Elosua, C., Corres, J. M., & Matias, I. R. (2025). Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes. Applied Sciences, 15(19), 10644. https://doi.org/10.3390/app151910644

