Polydeoxyribonucleotides as Emerging Therapeutics for Skin Diseases: Clinical Applications, Pharmacological Effects, Molecular Mechanisms, and Potential Modes of Action
Abstract
1. Introduction
2. Methods
3. Clinical Applications of PDRN as a Wound Healing Agent
3.1. Scientific and Commercial Definitions of PDRN/PN
3.2. Clinical Development for Wound Healing and Dermatological Potential
- 0.08% cream for superficial wounds and minor skin ulcers;
- 0.75 mg/3 mL topical solution for dystrophic and ulcerative connective tissue disorders;
- 5.625 mg/3 mL or 2.25 mg/3 mL injectable solution for dystrophic and ulcerative connective tissue disorders;
- 0.75 mg/mL ophthalmic solution for dystrophic and ulcerative conditions of the conjunctiva and cornea.
4. Clinical Applications of PDRN as a Dermal Filler
5. Pharmacological Effects and Molecular Mechanisms of PDRN in Dermatology
5.1. Pharmacological Activities of PDRN in Skin Cell Models
5.2. Molecular Mechanisms Underlying the Effects of PDRN in Skin Cell Models
6. Putative Modes of Action of PDRN as an exDNA-Based Material
6.1. PDRN as Extracellular DNA: Potential Mechanisms of Action
6.1.1. Structural Properties of PDRN as exDNA
6.1.2. Biological Roles of exDNA Beyond Genetic Information
6.2. Proposed Mechanisms by Which PDRN May Exert exDNA-like Biological Effects
6.2.1. TLR9 Activation
6.2.2. Cytosolic DNA Sensor Activation
6.2.3. Contribution Through the Nucleotide Salvage Pathway
7. Challenges, Controversies, and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QoL | Quality of Life |
WHO | World Health Organization |
ICD-11 | International Classification of Diseases, 11th Revision |
FDA | U.S. Food and Drug Administration |
TCSs | Topical Corticosteroids |
TCIs | Topical Calcineurin Inhibitors |
PDRN | Polydeoxyribonucleotides |
PN | Polynucleotides |
A2AR | Adenosine A2A Receptor |
kDa | Kilodalton |
bp | Base Pairs |
exDNA | Extracellular DNA |
EVs | Extracellular Vesicles |
TLRs | Toll-Like Receptors |
TLR9 | Toll-Like Receptor 9 |
CpG | Cytosine-phosphate-Guanine motif |
5-HT | 5-Hydroxytryptamine (Serotonin) |
AIFA | Agenzia Italiana del Farmaco |
HA | Hyaluronic Acid |
BDDE | 1,4-Butanediol Diglycidyl Ether |
PEGDE | Polyethylene glycol Diglycidyl Ether |
GAIS | Global Aesthetic Improvement Scale |
PLLA | Poly-L-lactic Acid |
DMPX | 3,7-Dimethyl-1-propargylxanthine |
COL1A1 | Collagen Type I Alpha 1 |
COL3A1 | Collagen Type III Alpha 1 |
TNF-α | Tumor Necrosis Factor-alpha |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1β |
IL-10 | Interleukin-10 |
TGF-β | Transforming Growth Factor-beta |
VEGF | Vascular Endothelial Growth Factor |
HRM-2 | Hairless HRM-2 Mouse |
SIRT1 | Sirtuin 1 |
SA-β-gal | Senescence-Associated β-Galactosidase |
GPCR | G Protein-Coupled Receptor |
cAMP | Cyclic Adenosine Monophosphate |
PKA | Protein Kinase A |
Epac2 | Exchange Protein Directly Activated by cAMP 2 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
HIF-1α | Hypoxia-Inducible Factor-1 alpha |
PECAM-1/CD31 | Platelet Endothelial Cell Adhesion Molecule-1/CD31 |
ECM | Extracellular Matrix |
dNTPs | Deoxyribonucleoside Triphosphates |
RNA | Ribonucleic Acid |
HEKs | Human Epidermal Keratinocytes |
HDFs | Human Dermal Fibroblasts |
ERK | Extracellular signal-Regulated Kinase |
AKT | Protein Kinase B |
MAPK | Mitogen-Activated Protein Kinase |
FAK | Focal Adhesion Kinase |
TEER | Transepithelial Electrical Resistance |
E-cadherin | Epithelial Cadherin |
NHEMs | Normal Human Epidermal Melanocytes |
MITF | Microphthalmia-associated Transcription Factor |
TYR | Tyrosinase |
HPLC | High-Performance Liquid Chromatography |
UV–vis | Ultraviolet–visible Spectroscopy |
NMR | Nuclear Magnetic Resonance |
IR | Infrared Spectroscopy |
FXII | Coagulation Factor XII |
FXI | Coagulation Factor XI |
RIG-I | Retinoic acid-Inducible Gene I |
DAI | DNA-dependent Activator of IFN-regulatory factors (ZBP1) |
PYHIN | Pyrin and HIN domain protein family |
IFI16 | Interferon Gamma Inducible Protein 16 |
ODN | Oligodeoxynucleotide |
MyD88 | Myeloid Differentiation Primary Response 88 |
IRF | Interferon Regulatory Factor |
SLE | Systemic Lupus Erythematosus |
PDGF-B | Platelet-Derived Growth Factor-B |
LPS | Lipopolysaccharide |
cGAS | Cyclic GMP-AMP Synthase |
STING | Stimulator of Interferon Genes |
cGAMP | Cyclic GMP-AMP |
TBK1 | TANK-Binding Kinase 1 |
IRF3 | Interferon Regulatory Factor 3 |
IFN | Interferon |
FN1 | Fibronectin 1 |
5-FU | 5-Fluorouracil |
APRT | Adenine Phosphoribosyltransferase |
CD73 | Ecto-5′-Nucleotidase |
CD39 | Ectonucleoside Triphosphate Diphosphohydrolase-1 |
ATP | Adenosine Triphosphate |
ADP | Adenosine Diphosphate |
AMP | Adenosine Monophosphate |
MFDS | Ministry of Food and Drug Safety |
DR | Drug Repositioning |
AI | Artificial Intelligence |
COVID-19 | Coronavirus Disease 2019 |
References
- Flohr, C.; Hay, R. Putting the burden of skin diseases on the global map. Br. J. Dermatol. 2021, 184, 189–190. [Google Scholar] [CrossRef]
- Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Investig. Dermatol. 2014, 134, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Trakatelli, M.; Richard, M.A.; Rouillard, A.; Paul, C.; Röcken, M.; Stratigos, A. The burden of skin disease in Europe. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Collins, S.A.; Resneck, J.S., Jr.; Bolognia, J.L.; Hodge, J.A.; Rohrer, T.A.; Van Beek, M.J.; Margolis, D.J.; Sober, A.J.; Weinstock, M.A. The burden of skin disease in the United States. J. Am. Acad. Dermatol. 2017, 76, 958–972.e952. [Google Scholar] [CrossRef]
- White, J.; Lui, H.; Chute, C.G.; Jakob, R.; Chalmers, R.J. The WHO ICD-11 Classification of Dermatological Diseases: A new comprehensive online skin disease taxonomy designed by and for dermatologists. Br. J. Dermatol. 2022, 186, 178–179. [Google Scholar] [CrossRef]
- Sikder, B.; Sil, A. Fresh Baked: An Overview of Newly FDA-Approved Drugs for Dermatological Usage. Indian J. Dermatol. 2023, 68, 707–720. [Google Scholar] [CrossRef]
- Mazmudar, R.S.; Tripathi, R.; Ezaldein, H.H.; Scott, J.F. United States stock market response to FDA approval of new dermatologic drugs. J. Drugs Dermatol. JDD 2020, 19, 639–645. [Google Scholar]
- Eaglstein, W.H.; Corcoran, G. New drugs and new molecular entities in dermatology. Arch. Dermatol. 2011, 147, 568–572. [Google Scholar] [CrossRef]
- Fathi, R.; Armstrong, A.W. The role of biologic therapies in dermatology. Med. Clin. 2015, 99, 1183–1194. [Google Scholar] [CrossRef]
- Pariser, D. Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: Focus on percutaneous absorption. Am. J. Ther. 2009, 16, 264–273. [Google Scholar] [CrossRef]
- Hanna, S.; Zip, C.; Shear, N.H. What is the risk of harm associated with topical calcineurin inhibitors? J. Cutan. Med. Surg. 2019, 23, 19S–26S. [Google Scholar] [CrossRef]
- Kapała, J.; Lewandowska, J.; Placek, W.; Owczarczyk-Saczonek, A. Adverse events in isotretinoin therapy: A single-arm meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 6463. [Google Scholar] [CrossRef]
- Kim, T.-H.; Heo, S.-Y.; Oh, G.-W.; Heo, S.-J.; Jung, W.-K. Applications of marine organism-derived polydeoxyribonucleotide: Its potential in biomedical engineering. Mar. Drugs 2021, 19, 296. [Google Scholar] [CrossRef]
- Altavilla, D.; Bitto, A.; Polito, F.; Marini, H.; Minutoli, L.; Stefano, V.D.; Irrera, N.; Cattarini, G.; Squadrito, F. Polydeoxyribonucleotide (PDRN): A safe approach to induce therapeutic angiogenesis in peripheral artery occlusive disease and in diabetic foot ulcers. Cardiovasc. Hematol. Agents Med. Chem. (Former.) 2009, 7, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Park, G.Y.; Jang, B.-C. Polydeoxyribonucleotide as a Regenerative Agent in Dermatology and Wound Healing: Mechanisms, Clinical Applications, and Safety. Keimyung Med. J. 2025, 44, 9–18. [Google Scholar]
- Rho, N.K.; Han, K.H.; Cho, M.; Kim, H.S. A survey on the cosmetic use of injectable polynucleotide: The pattern of practice among Korean Dermatologists. J. Cosmet. Dermatol. 2024, 23, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Seok, J.; Rho, N.K.; Kim, B.J.; Kim, M.N. Long-chain polynucleotide filler for skin rejuvenation: Efficacy and complications in five patients. Dermatol. Ther. 2016, 29, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Abuyousif, H.S.; Porcello, A.; Cerrano, M.; Marques, C.; Scaletta, C.; Lourenço, K.; Abdel-Sayed, P.; Chemali, M.; Raffoul, W.; Hirt-Burri, N. In vitro evaluation and clinical effects of a regenerative complex with non-cross-linked hyaluronic acid and a high-molecular-weight polynucleotide for periorbital treatment. Polymers 2025, 17, 638. [Google Scholar] [CrossRef]
- Oh, S.; Jeon, H.-D.; Rho, N.-K.; Son, K.H.; Byun, K. Polynucleotide Mixture Attenuates Ultraviolet B-Induced Skin Pigmentation. Int. J. Mol. Sci. 2025, 26, 6399. [Google Scholar] [CrossRef]
- Thanasarnaksorn, W.; Limsuchaiwat, N.; Sirithanabadeekul, P.; Charoensuksira, S.; Suwanchinda, A.; Meephansan, J. Polynucleotides as a novel therapeutic approach in androgenetic alopecia: An analysis of effectiveness and safety. Arch. Dermatol. Res. 2025, 317, 399. [Google Scholar] [CrossRef]
- Kim, M.J.; Wan, J.; Oksana, L.; Yuliia, L.; Chugay, O.; Platonova, O.; Sydorchuk, O.; Yi, K.-H. Polynucleotide-based treatments for various facial scars including combat injuries. J. Dermatol. Treat. 2024, 35, 2426626. [Google Scholar] [CrossRef]
- Kim, S.T. Comparison of Polynucleotide and Polydeoxyribonucleotide in Dermatology: Molecular Mechanisms and Clinical Perspectives. Pharmaceutics 2025, 17, 1024. [Google Scholar] [CrossRef]
- Lampridou, S.; Bassett, S.; Cavallini, M.; Christopoulos, G. The Effectiveness of Polynucleotides in Esthetic Medicine: A Systematic Review. J. Cosmet. Dermatol. 2025, 24, e16721. [Google Scholar] [CrossRef] [PubMed]
- Weed, L.L.; Courtenay, T.A. A new nucleotide and a new polynucleotide from bacteriophage nucleic acid. J. Bioi. Ohem 1954, 206, 735–740. [Google Scholar] [CrossRef]
- Grunberg-Manago, M.; Ortiz, P.J.; Ochoa, S. Enzymatic synthesis of nucleic acidlike polynucleotides. Science 1955, 122, 907–910. [Google Scholar] [CrossRef]
- Birnie, G.; Fox, S.M. The synthesis of polydeoxyribonucleotide by cell-free extracts of embryonic mouse tissue. Biochem. J. 1967, 104, 239. [Google Scholar] [CrossRef]
- Sarkar, N. Effects of actinomycin D and mitomycin C on the degradation of deoxyribonucleic acid and polydeoxyribonucleotide by deoxyribonucleases and venom phosphodiesterase. Biochim. Et Biophys. Acta (BBA)-Nucleic Acids Protein Synth. 1967, 145, 174–177. [Google Scholar] [CrossRef]
- Vilcek, J.; Ng, M.H.; Friedman-Kien, A.; Krawciw, T. Induction of interferon synthesis by synthetic double-stranded polynucleotides. J. Virol. 1968, 2, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Field, A.K.; Young, C.W.; Krakoff, I.H.; Tytell, A.A.; Lampson, G.P.; Nemes, M.M.; Hilleman, M.R. Induction of interferon in human subjects by poly I: C. Proc. Soc. Exp. Biol. Med. 1971, 136, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Pescador, R.; Capuzzi, L.; Mantovani, M.; Fulgenzi, A.; Ferrero, M. Defibrotide: Properties and clinical use of an old/new drug. Vasc. Pharmacol. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Thiemermann, C.; Löbel, P.; Schrör, K. Usefulness of defibrotide in protecting ischemic myocardium from early reperfusion damage. Am. J. Cardiol. 1985, 56, 978–982. [Google Scholar] [CrossRef]
- Tonello, G.; Daglio, M.; Zaccarelli, N.; Sottofattori, E.; Mazzei, M.; Balbi, A. Characterization and quantitation of the active polynucleotide fraction (PDRN) from human placenta, a tissue repair stimulating agent. J. Pharm. Biomed. Anal. 1996, 14, 1555–1560. [Google Scholar] [CrossRef]
- Baker, D.E.; Demaris, K. Defibrotide. Hosp. Pharm. 2016, 51, 847–854. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.-J.; Jang, H.-J.; Park, H.; Kim, G.J. Human Placenta MSC-Derived DNA Fragments Exert Therapeutic Effects in a Skin Wound Model via the A2A Receptor. Int. J. Mol. Sci. 2025, 26, 1769. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.H.; Kim, J.H.; Park, E.Y.; Cha, S.K. An effective range of polydeoxyribonucleotides is critical for wound healing quality. Mol. Med. Rep. 2018, 18, 5166–5172. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.D.; Goswami, S.; Bera, S.; Mukhopadhyay, I. Quantitation of polydeoxyribonucletides (PDRNs) in human placental extract by fluorescence spectroscopy using ethidium bromide. Am. J. Anal. Chem. 2014, 5, 784–795. [Google Scholar] [CrossRef]
- Lee, K.-S.; Lee, S.; Wang, H.; Lee, G.; Kim, S.; Ryu, Y.-H.; Chang, N.H.; Kang, Y.-W. Analysis of skin regeneration and barrier-improvement efficacy of polydeoxyribonucleotide isolated from Panax ginseng (CA Mey.) adventitious root. Molecules 2023, 28, 7240. [Google Scholar] [CrossRef] [PubMed]
- Chae, D.; Oh, S.-W.; Choi, Y.-S.; Kang, D.-J.; Park, C.-W.; Lee, J.; Seo, W.-S. First report on microbial-derived polydeoxyribonucleotide: A sustainable and enhanced alternative to salmon-based polydeoxyribonucleotide. Curr. Issues Mol. Biol. 2025, 47, 41. [Google Scholar] [CrossRef]
- Kuppa, S.S.; Kim, H.-K.; Kang, J.-Y.; Lee, S.-C.; Yang, H.-Y.; Sankaranarayanan, J.; Seon, J.-K. Polynucleotides suppress inflammation and stimulate matrix synthesis in an in vitro cell-based osteoarthritis model. Int. J. Mol. Sci. 2023, 24, 12282. [Google Scholar] [CrossRef]
- Jose, D.; Porschke, D. Dynamics of the B–A transition of DNA double helices. Nucleic Acids Res. 2004, 32, 2251–2258. [Google Scholar] [CrossRef]
- Marques, C.; Porcello, A.; Cerrano, M.; Hadjab, F.; Chemali, M.; Lourenço, K.; Hadjab, B.; Raffoul, W.; Applegate, L.A.; Laurent, A.E. From Polydeoxyribonucleotides (PDRNs) to Polynucleotides (PNs): Bridging the Gap Between Scientific Definitions, Molecular Insights, and Clinical Applications of Multifunctional Biomolecules. Biomolecules 2025, 15, 148. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, H.T.; Lee, Y.J.; Paik, S.H.; Moon, Y.S.; Lee, W.J.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Jung, J.M. Comparison of the effects of polynucleotide and hyaluronic acid fillers on periocular rejuvenation: A randomized, double-blind, split-face trial. J. Dermatol. Treat. 2022, 33, 254–260. [Google Scholar] [CrossRef]
- Dorsch, C.A.; Killmayer, J. The effect of native and single stranded DNA on the platelet release reaction. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1983, 26, 179–185. [Google Scholar] [CrossRef]
- Fiedel, B.A.; Schoenberger, J.S.; Gewurz, H. Modulation of platelet activation by native DNA. J. Immunol. 1979, 123, 2479–2483. [Google Scholar] [CrossRef]
- Liu, B.; Jin, Y.; Yang, J.; Han, Y.; Shan, H.; Qiu, M.; Zhao, X.; Liu, A.; Jin, Y.; Yin, Y. Extracellular vesicles from lung tissue drive bone marrow neutrophil recruitment in inflammation. J. Extracell. Vesicles 2022, 11, e12223. [Google Scholar] [CrossRef]
- Bogan, K.L.; Brenner, C. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. New J. Chem. 2010, 34, 845–853. [Google Scholar] [CrossRef]
- Colangelo, M.T.; Galli, C.; Guizzardi, S. The Effects of Polydeoxyribonucleotide on Wound Healing and Tissue Regeneration: A Systematic Review of the Literature. Regen. Med. 2020, 15, 1801–1821. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, J.W.; Byun, J.H.; Lee, W.M.; Kim, M.H.; Wu, W.H. Comparison of wound healing effects between Oncorhynchus keta-derived polydeoxyribonucleotide (PDRN) and Oncorhynchus mykiss-derived PDRN. Arch. Craniofacial Surg. 2018, 19, 20. [Google Scholar] [CrossRef]
- Kim, T.H.; Heo, S.Y.; Han, J.S.; Jung, W.K. Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.)(Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN. Cell Biochem. Funct. 2023, 41, 889–897. [Google Scholar] [CrossRef]
- Squadrito, F.; Bitto, A.; Altavilla, D.; Arcoraci, V.; De Caridi, G.; De Feo, M.E.; Corrao, S.; Pallio, G.; Sterrantino, C.; Minutoli, L. The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: Results of a clinical trial. J. Clin. Endocrinol. Metab. 2014, 99, E746–E753. [Google Scholar]
- Shin, J.; Park, G.; Lee, J.; Bae, H. The effect of polydeoxyribonucleotide on chronic non-healing wound of an amputee: A case report. Ann. Rehabil. Med. 2018, 42, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, F.; Bitto, A.; Irrera, N.; Pizzino, G.; Pallio, G.; Minutoli, L.; Altavilla, D. Pharmacological activity and clinical use of PDRN. Front. Pharmacol. 2017, 8, 224. [Google Scholar] [CrossRef]
- Veronesi, F.; Dallari, D.; Sabbioni, G.; Carubbi, C.; Martini, L.; Fini, M. Polydeoxyribonucleotides (PDRNs) from skin to musculoskeletal tissue regeneration via adenosine A2A receptor involvement. J. Cell. Physiol. 2017, 232, 2299–2307. [Google Scholar] [CrossRef]
- Irrera, N.; Arcoraci, V.; Mannino, F.; Vermiglio, G.; Pallio, G.; Minutoli, L.; Bagnato, G.; Anastasi, G.P.; Mazzon, E.; Bramanti, P. Activation of A2A receptor by PDRN reduces neuronal damage and stimulates WNT/β-CATENIN driven neurogenesis in spinal cord injury. Front. Pharmacol. 2018, 9, 506. [Google Scholar] [CrossRef]
- Seo, S.-S.; Lee, I.-S.; Lee, G.-H. Intra-articular injection therapy and biologic treatment. In A Strategic Approach to Knee Arthritis Treatment: From Non-Pharmacologic Management to Surgery; Springer: Singapore, 2021; pp. 171–212. [Google Scholar]
- Zucchi, A.; Cai, T.; Cavallini, G.; D’Achille, G.; Pastore, A.L.; Franco, G.; Lepri, L.; Costantini, E. Genital lichen sclerosus in male patients: A new treatment with polydeoxyribonucleotide. Urol. Int. 2016, 97, 98–103. [Google Scholar] [CrossRef]
- Galeano, M.; Pallio, G.; Irrera, N.; Mannino, F.; Bitto, A.; Altavilla, D.; Vaccaro, M.; Squadrito, G.; Arcoraci, V.; Colonna, M.R. Polydeoxyribonucleotide: A promising biological platform to accelerate impaired skin wound healing. Pharmaceuticals 2021, 14, 1103. [Google Scholar] [CrossRef]
- Guo, J.; Fang, W.; Wang, F. An injectable hyaluronic acid-polydeoxyribonucleotides (HA-PDRN) crosslinked hydrogel as a dermal filler. Eur. Polym. J. 2024, 219, 113395. [Google Scholar]
- Yi, K.-H.; Park, M.-S.; Ree, Y.-S.; Kim, H.M. A review on “skin boosters”: Hyaluronic acid, poly-L-lactic acid and pol-D-lactic acid, polydeoxyribonucleotide, polynucleotides, growth factor, and exosome. Aesthetics 2023, 4, 1–5. [Google Scholar] [CrossRef]
- Keizers, P.H.; Vanhee, C.; van den Elzen, E.M.; de Jong, W.H.; Venhuis, B.J.; Hodemaekers, H.M.; Schwillens, P.; Lensen, D.G. A high crosslinking grade of hyaluronic acid found in a dermal filler causing adverse effects. J. Pharm. Biomed. Anal. 2018, 159, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.H.; Yune, J.H.; Kwon, H.C.; Shin, D.-M.; Sohn, H.; Lee, K.H.; Choi, B.; Kim, E.S.; Kang, J.H.; Kim, E.K. In vitro toxicity assessment of crosslinking agents used in hyaluronic acid dermal filler. Toxicol. Vitr. 2021, 70, 105034. [Google Scholar] [CrossRef]
- Abduljabbar, M.H.; Basendwh, M.A. Complications of hyaluronic acid fillers and their managements. J. Dermatol. Dermatol. Surg. 2016, 20, 100–106. [Google Scholar] [CrossRef]
- Yi, K.H.; Winayanuwattikun, W.; Kim, S.Y.; Wan, J.; Vachatimanont, V.; Putri, A.I.; Hidajat, I.J.; Yogya, Y.; Pamela, R. Skin boosters: Definitions and varied classifications. Skin Res. Technol. 2024, 30, e13627. [Google Scholar] [CrossRef]
- Choi, S.Y.; Koh, Y.G.; Yoo, K.H.; Han, H.S.; Seok, J.; Kim, B.J. A Randomized, Participant-and Evaluator-Blinded, Matched-Pair, Prospective Study Comparing the Safety and Efficacy Between Polycaprolactone and Polynucleotide Fillers in the Correction of Crow’s Feet. J. Cosmet. Dermatol. 2025, 24, e16576. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, E.S.; Kim, S.W.; Hong, S.P.; Kim, J. Effects of Polynucleotide Dermal Filler in the Correction of Crow’s Feet Using an Antera Three-Dimensional Camera. Aesthetic Plast. Surg. 2022, 46, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kwon, T.-R.; Lee, S.E.; Jang, Y.N.; Han, H.S.; Mun, S.K.; Kim, B.J. Comparative evaluation of the effectiveness of novel hyaluronic acid-polynucleotide complex dermal filler. Sci. Rep. 2020, 10, 5127. [Google Scholar] [CrossRef]
- Oh, H.; Lee, S.; Na, J.; Kim, J.H. Comparative evaluation of safety and efficacy of a novel hyaluronic acid-polynucleotide/poly-L-lactic acid composite dermal filler. Aesthetic Plast. Surg. 2021, 45, 1792–1801. [Google Scholar] [CrossRef]
- Lee, S.H.; Zheng, Z.; Kang, J.S.; Kim, D.Y.; Oh, S.H.; Cho, S.B. Therapeutic efficacy of autologous platelet-rich plasma and polydeoxyribonucleotide on female pattern hair loss. Wound Repair Regen. 2015, 23, 30–36. [Google Scholar] [CrossRef]
- Cho, S.B.; Zheng, Z.; Kang, J.-S.; Kim, H. Therapeutic efficacy of 1927-nm fractionated thulium laser energy and polydeoxyribonucleotide on pattern hair loss. Med. Lasers 2016, 5, 22–28. [Google Scholar] [CrossRef]
- Choi, Y.J.; Cho, S.; Kim, Y.K.; Kim, D.S. Improvement of hair graying during a treatment of male pattern hair loss using 1927-nm fractionated thulium laser energy and polydeoxyribonucleotide injections. Med. Lasers 2017, 6, 37–40. [Google Scholar] [CrossRef]
- Laino, L.; Suetti, S.; Sperduti, I. Polydeoxyribonucleotide dermal infiltration in male genital lichen sclerosus: Adjuvant effects during topical therapy. Dermatol. Res. Pract. 2013, 2013, 654079. [Google Scholar] [CrossRef]
- Gulfan, M.C.B.; Wanitphakdeedecha, R.; Wongdama, S.; Jantanapornchai, N.; Yan, C.; Rakchart, S. Efficacy and safety of using noninsulated microneedle radiofrequency alone versus in combination with polynucleotides for the treatment of melasma: A pilot study. Dermatol. Ther. 2022, 12, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.R.; Moon, Y.S.; Kwon, D.Y. Combination Therapy of Polydeoxyribonucleotide and Microcurrent in Muscle Regeneration on Cast-Induced Muscle Atrophy in Rabbit. BioMed Res. Int. 2022, 2022, 7469452. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Lee, J.Y. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model. J. Cosmet. Laser Ther. 2017, 19, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.M.; Baek, E.J.; Kim, K.H.; Kim, K.J.; Park, E.J. Polydeoxyribonucleotide exerts opposing effects on ERK activity in human skin keratinocytes and fibroblasts. Mol. Med. Rep. 2023, 28, 148. [Google Scholar] [CrossRef]
- Kim, H.M.; Byun, K.-A.; Oh, S.; Yang, J.Y.; Park, H.J.; Chung, M.S.; Son, K.H.; Byun, K. A mixture of topical forms of polydeoxyribonucleotide, vitamin C, and niacinamide attenuated skin pigmentation and increased skin elasticity by modulating nuclear factor erythroid 2-like 2. Molecules 2022, 27, 1276. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, M.-J.; Kweon, D.-K.; Lim, S.-T.; Lee, S.-J. Polydeoxyribonucleotide activates mitochondrial biogenesis but reduces MMP-1 activity and melanin biosynthesis in cultured skin cells. Appl. Biochem. Biotechnol. 2020, 191, 540–554. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, F.; Shi, J.; Huang, W.; Zhao, C.; Han, Q. PDRN prevents SIRT1 degradation by attenuating autophagy during skin aging. PLoS ONE 2025, 20, e0321005. [Google Scholar] [CrossRef]
- Thellung, S.; Florio, T.; Maragliano, A.; Cattarini, G.; Schettini, G. Polydeoxyribonucleotides enhance the proliferation of human skin fibroblasts: Involvement of A2 purinergic receptor subtypes. Life Sci. 1999, 64, 1661–1674. [Google Scholar] [CrossRef]
- Irrera, N.; Bitto, A.; Vaccaro, M.; Mannino, F.; Squadrito, V.; Pallio, G.; Arcoraci, V.; Minutoli, L.; Ieni, A.; Lentini, M. PDRN, a bioactive natural compound, ameliorates imiquimod-induced psoriasis through NF-κB pathway inhibition and Wnt/β-Catenin signaling modulation. Int. J. Mol. Sci. 2020, 21, 1215. [Google Scholar] [CrossRef]
- Noh, T.K.; Chung, B.Y.; Kim, S.Y.; Lee, M.H.; Kim, M.J.; Youn, C.S.; Lee, M.W.; Chang, S.E. Novel anti-melanogenesis properties of polydeoxyribonucleotide, a popular wound healing booster. Int. J. Mol. Sci. 2016, 17, 1448. [Google Scholar] [CrossRef]
- Jeong, W.; Yang, C.E.; Roh, T.S.; Kim, J.H.; Lee, J.H.; Lee, W.J. Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model. Int. J. Mol. Sci. 2017, 18, 1698. [Google Scholar] [CrossRef]
- Dananjaya, S.; Bandara, N.; Molagoda, I.M.N.; Sandamalika, W.G.; Kim, D.; Ganepola, N.; Attanayake, A.P.; Choi, D. Multifunctional alginate/polydeoxyribonucleotide hydrogels for promoting diabetic wound healing. Int. J. Biol. Macromol. 2024, 257, 128367. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-K.; Yoon, H.-E.; Park, J.-K.; Kim, M.R.; Kim, D.-I. Wound healing effect of low molecular PDRN on experimental surgical excision rat model. J. Soc. Cosmet. Sci. Korea 2015, 41, 401–411. [Google Scholar] [CrossRef]
- Lee, K.W.A.; Chan, K.W.L.; Lee, A.; Lee, C.H.; Wan, J.; Wong, S.; Yi, K.-H. Polynucleotides in aesthetic medicine: A review of current practices and perceived effectiveness. Int. J. Mol. Sci. 2024, 25, 8224. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.; Hwang, J.; Kang, M.S.; Yoo, C.-Y.; Kwak, M.; Han, D.-W. Versatile and marvelous potentials of polydeoxyribonucleotide for tissue engineering and regeneration. Biomater. Res. 2025, 29, 0183. [Google Scholar] [CrossRef]
- Ceravolo, I.; Mannino, F.; Irrera, N.; Minutoli, L.; Arcoraci, V.; Altavilla, D.; Cavallini, G.M.; Guarini, S.; Squadrito, F.; Pallio, G. Beneficial effects of polydeoxyribonucleotide (PDRN) in an in vitro model of fuchs endothelial corneal dystrophy. Pharmaceuticals 2022, 15, 447. [Google Scholar] [CrossRef]
- Castellini, C.; Belletti, S.; Govoni, P.; Guizzardi, S. Anti inflammatory property of PDRN—An in vitro study on cultured macrophages. Adv. Biosci. Biotechnol. 2017, 8, 13–26. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, S.; Wang, J.; Xu, Y.; Wang, Y.; Zhang, S.; Xu, X.; Yang, Q.; Zeng, X.; Zhou, Y. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun. 2017, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Ernens, I.; Léonard, F.; Vausort, M.; Rolland-Turner, M.; Devaux, Y.; Wagner, D.R. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem. Biophys. Res. Commun. 2010, 392, 351–356. [Google Scholar] [CrossRef]
- Tran, D.H.; Kim, D.; Kesavan, R.; Brown, H.; Dey, T.; Soflaee, M.H.; Vu, H.S.; Tasdogan, A.; Guo, J.; Bezwada, D. De novo and salvage purine synthesis pathways across tissues and tumors. Cell 2024, 187, 3602–3618.e3620. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.-L. Recent advances on polydeoxyribonucleotide extraction and its novel application in cosmeceuticals. Int. J. Biol. Macromol. 2024, 282, 137051. [Google Scholar] [CrossRef]
- Yang, K.; Wang, L.; Cao, X.; Gu, Z.; Zhao, G.; Ran, M.; Yan, Y.; Yan, J.; Xu, L.; Gao, C. The origin, function, distribution, quantification, and research advances of extracellular DNA. Int. J. Mol. Sci. 2022, 23, 13690. [Google Scholar] [CrossRef] [PubMed]
- Liaw, P.C.; Ito, T.; Iba, T.; Thachil, J.; Zeerleder, S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 2016, 30, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.X.; Wang, C.Y.; Zhang, J.S.; Wang, Z.Y.; Wei, Y.; Li, Y.t.; Dai, S.Q.; Tay, F.R.; Niu, L.n. DNA-Based Materials Inspired by Natural Extracellular DNA. Adv. Funct. Mater. 2023, 33, 2211669. [Google Scholar] [CrossRef]
- Carbajal-Valenzuela, I.A.; Medina-Ramos, G.; Caicedo-Lopez, L.H.; Jiménez-Hernández, A.; Ortega-Torres, A.E.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Guevara-González, R.G. Extracellular DNA: Insight of a signal molecule in crop protection. Biology 2021, 10, 1022. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.J.; Goa, K.L. Defibrotide: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in vascular disorders. Drugs 1993, 45, 259–294. [Google Scholar]
- Mandel, P. Les acides nucleiques du plasma sanguin chez 1 homme. CR Seances Soc Biol Fil 1948, 142, 241–243. [Google Scholar]
- Aarthy, R.; Mani, S.; Velusami, S.; Sundarsingh, S.; Rajkumar, T. Role of circulating cell-free DNA in cancers. Mol. Diagn. Ther. 2015, 19, 339–350. [Google Scholar] [CrossRef]
- Stein, C.; Castanotto, D.; Krishnan, A.; Nikolaenko, L. Defibrotide (Defitelio): A new addition to the stockpile of food and drug administration-approved oligonucleotide drugs. Mol. Ther. Nucleic Acids 2016, 5, e346. [Google Scholar]
- Pisetsky, D.S.; Gauley, J.; Ullal, A.J. Microparticles as a source of extracellular DNA. Immunol. Res. 2011, 49, 227–234. [Google Scholar]
- Pisetsky, D.S. The origin and properties of extracellular DNA: From PAMP to DAMP. Clin. Immunol. 2012, 144, 32–40. [Google Scholar] [CrossRef]
- Fernández-Domínguez, I.J.; Manzo-Merino, J.; Taja-Chayeb, L.; Dueñas-González, A.; Pérez-Cárdenas, E.; Trejo-Becerril, C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol. Ther. 2021, 22, 267–278. [Google Scholar] [CrossRef]
- Wen, F.; Shen, A.; Choi, A.; Gerner, E.W.; Shi, J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013, 73, 4256–4266. [Google Scholar] [CrossRef] [PubMed]
- Picciolo, G.; Mannino, F.; Irrera, N.; Altavilla, D.; Minutoli, L.; Vaccaro, M.; Arcoraci, V.; Squadrito, V.; Picciolo, G.; Squadrito, F. PDRN, a natural bioactive compound, blunts inflammation and positively reprograms healing genes in an “in vitro” model of oral mucositis. Biomed. Pharmacother. 2021, 138, 111538. [Google Scholar] [CrossRef]
- Baek, A.; Baek, D.; Kim, S.H.; Kim, J.; Notario, G.R.; Lee, D.W.; Kim, H.J.; Cho, S.-R. Polydeoxyribonucleotide ameliorates IL-1β-induced impairment of chondrogenic differentiation in human bone marrow-derived mesenchymal stem cells. Sci. Rep. 2024, 14, 26076. [Google Scholar]
- Mannino, F.; Pallio, G.; Bitto, A.; Altavilla, D.; Minutoli, L.; Squadrito, V.; Arcoraci, V.; Giorgi, D.A.; Pirrotta, I.; Squadrito, F. Targeting adenosine receptor by polydeoxyribonucleotide: An effective therapeutic strategy to induce white-to-brown adipose differentiation and to curb obesity. Pharmaceuticals 2021, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Potlapalli, R.; Quan, H.; Chen, L.; Xie, Y.; Pouriyeh, S.; Sakib, N.; Liu, L.; Xie, Y. Exploring DNA damage and repair mechanisms: A review with computational insights. BioTech 2024, 13, 3. [Google Scholar] [CrossRef]
- Pisetsky, D.S.; Fairhurst, A.-M. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 2007, 40, 281–284. [Google Scholar] [CrossRef]
- Wang, J. DNA damage and apoptosis. Cell Death Differ. 2001, 8, 1047–1048. [Google Scholar] [CrossRef]
- Peddu, V.; Bradley, B.T.; Casto, A.M.; Shree, R.; Colbert, B.G.; Xie, H.; Santo, T.K.; Huang, M.-L.; Cheng, E.Y.; Konnick, E. High-resolution profiling of human cytomegalovirus cell-free DNA in human plasma highlights its exceptionally fragmented nature. Sci. Rep. 2020, 10, 3734. [Google Scholar] [CrossRef]
- Kowarsky, M.; Camunas-Soler, J.; Kertesz, M.; De Vlaminck, I.; Koh, W.; Pan, W.; Martin, L.; Neff, N.F.; Okamoto, J.; Wong, R.J. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc. Natl. Acad. Sci. USA 2017, 114, 9623–9628. [Google Scholar]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. 2018, 93, 1649–1683. [Google Scholar]
- Hawes, M.C.; Wen, F.; Elquza, E. Extracellular DNA: A bridge to cancer. Cancer Res. 2015, 75, 4260–4264. [Google Scholar] [CrossRef]
- Unno, K.; Taguchi, K.; Fujita, M.; Sutoh, K.; Nakamura, Y. Stress Reduction Potential in Mice Ingesting DNA from Salmon Milt. Biology 2023, 12, 978. [Google Scholar] [CrossRef]
- Peters, D.L.; Pretorius, P.J. Origin, translocation and destination of extracellular occurring DNA—A new paradigm in genetic behaviour. Clin. Chim. Acta 2011, 412, 806–811. [Google Scholar] [PubMed]
- Ruzanova, V.; Oshikhmina, S.; Proskurina, A.; Ritter, G.; Kirikovich, S.; Levites, E.; Efremov, Y.; Karamysheva, T.; Meschaninova, M.; Mamaev, A. A concept of natural genome reconstruction. Part 2. Effect of extracellular double-stranded DNA fragments on hematopoietic stem cells. Vavilov J. Genet. Breed. 2024, 28, 993. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-K.; Pietersz, G.A. Intracellular detection and immune signaling pathways of DNA vaccines. Expert Rev. Vaccines 2009, 8, 1161–1170. [Google Scholar] [CrossRef]
- Guizzardi, S.; Galli, C.; Govoni, P.; Boratto, R.; Cattarini, G.; Martini, D.; Belletti, S.; Scandroglio, R. Polydeoxyribonucleotide (PDRN) promotes human osteoblast proliferation: A new proposal for bone tissue repair. Life Sci. 2003, 73, 1973–1983. [Google Scholar] [CrossRef]
- Lou, H.; Pickering, M.C. Extracellular DNA and autoimmune diseases. Cell. Mol. Immunol. 2018, 15, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Levy-Booth, D.J.; Campbell, R.G.; Gulden, R.H.; Hart, M.M.; Powell, J.R.; Klironomos, J.N.; Pauls, K.P.; Swanton, C.J.; Trevors, J.T.; Dunfield, K.E. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 2007, 39, 2977–2991. [Google Scholar] [CrossRef]
- Wagner, H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr. Opin. Microbiol. 2002, 5, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kiemer, A.K.; Senaratne, R.H.; Hoppstädter, J.; Diesel, B.; Riley, L.W.; Tabeta, K.; Bauer, S.; Beutler, B.; Zuraw, B.L. Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria. J. Innate Immun. 2008, 1, 29–45. [Google Scholar] [CrossRef]
- Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 2002, 20, 709–760. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Emi, M.; Tanabe, K. Cancer immunosuppression and autoimmune disease: Beyond immunosuppressive networks for tumour immunity. Immunology 2006, 119, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Gursel, I.; Gursel, M.; Yamada, H.; Ishii, K.J.; Takeshita, F.; Klinman, D.M. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J. Immunol. 2003, 171, 1393–1400. [Google Scholar] [CrossRef]
- Goodman, S.D. Extracellular DNA-protein interactions. Curr. Opin. Struct. Biol. 2024, 89, 102943. [Google Scholar] [CrossRef]
- Kim, M.S.; Cho, R.K.; In, Y. The efficacy and safety of polydeoxyribonucleotide for the treatment of knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. Medicine 2019, 98, e17386. [Google Scholar] [CrossRef]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef]
- Zhu, F.-G.; Reich, C.F.; Pisetsky, D.S. Effect of cytofectins on the immune response of murine macrophages to mammalian DNA. Immunology 2003, 109, 255–262. [Google Scholar] [CrossRef]
- Poltorak, A.; He, X.; Smirnova, I.; Liu, M.-Y.; Huffel, C.V.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef]
- Kumar, V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front. Immunol. 2021, 11, 624597109. [Google Scholar] [CrossRef]
- Fang, F.; Marangoni, R.G.; Zhou, X.; Yang, Y.; Ye, B.; Shangguang, A.; Qin, W.; Wang, W.; Bhattacharyya, S.; Wei, J.; et al. Toll-like Receptor 9 Signaling Is Augmented in Systemic Sclerosis and Elicits Transforming Growth Factor β–Dependent Fibroblast Activation. Arthritis Rheumatol. 2016, 68, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Lebre, M.C.; van der Aar, A.M.G.; van Baarsen, L.; van Capel, T.M.M.; Schuitemaker, J.H.N.; Kapsenberg, M.L.; de Jong, E.C. Human Keratinocytes Express Functional Toll-Like Receptor 3, 4, 5, and 9. J. Investig. Dermatol. 2007, 127, 331–341. [Google Scholar] [CrossRef]
- Anunobi, R.; Boone, B.A.; Cheh, N.; Tang, D.; Kang, R.; Loux, T.; Lotze, M.T.; Zeh, H.J. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J. Surg. Res. 2018, 226, 181–191. [Google Scholar] [CrossRef]
- Speranskii, A.I.; Kostyuk, S.V.; Kalashnikova, E.A.; Veiko, N.N. Erichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with Genomic CpG rich fragments results in increased cell production of IL-6 and TNFα via activation of the NF-κB signaling pathway. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2015, 9, 174–184. [Google Scholar] [CrossRef]
- Wang, W.; Kong, P.; Ma, G.; Li, L.; Zhu, J.; Xia, T.; Xie, H.; Zhou, W.; Wang, S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget 2017, 8, 43180–43191. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Zank, D.; Buendia-Roldán, I.; Fiedler, K.; Mays, B.G.; Alvarez, D.; Sembrat, J.; Kimball, B.; Bullock, J.K.; Martin, J.L.; et al. PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS ONE 2019, 14, e0218003. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, M.; Wang, K.; Sun, J.; Song, L.; Diao, X.; Jiang, Z.; Cheng, G.; Wang, X. Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Res. Ther. 2017, 19, 70. [Google Scholar] [CrossRef]
- Briard, B.; Place, D.E.; Kanneganti, T.-D. DNA sensing in the innate immune response. Physiology 2020, 35, 112–124. [Google Scholar] [CrossRef]
- Zahid, A.; Ismail, H.; Li, B.; Jin, T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front. Immunol. 2020, 11, 613039. [Google Scholar] [CrossRef]
- Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef]
- Mizutani, Y.; Kanbe, A.; Ito, H.; Seishima, M. Activation of STING signaling accelerates skin wound healing. J. Dermatol. Sci. 2020, 97, 21–29. [Google Scholar] [CrossRef]
- Mathavarajah, S.; Thompson, A.W.; Stoyek, M.R.; Quinn, T.A.; Roy, S.; Braasch, I.; Dellaire, G. Suppressors of cGAS-STING are downregulated during fin-limb regeneration and aging in aquatic vertebrates. J. Exp. Zool. Part B Mol. Dev. Evol. 2024, 342, 241–251. [Google Scholar] [CrossRef]
- Sun, S.-C.; Han, R.; Hou, S.-S.; Yi, H.-Q.; Chi, S.-J.; Zhang, A.-H. Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed. Pharmacother. 2020, 127, 110119. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wu, X.; Zhao, D.; Liu, Y.; Du, Q.; Li, Y.; Xu, Y.; Li, Y.; Qiu, Y.; Yang, Y. Fluvoxamine alleviates bleomycin-induced lung fibrosis via regulating the cGAS-STING pathway. Pharmacol. Res. 2023, 187, 106577. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Wang, H.; Hu, W.; Sun, L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. J. Ethnopharmacol. 2024, 325, 117820. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, L.; Byrd, K.M.; Ko, C.-C.; Zhao, Z.; Fang, J. AIM2 inflammasome’s first decade of discovery: Focus on oral diseases. Front. Immunol. 2020, 11, 1487. [Google Scholar] [CrossRef]
- Zanini, G.; Bertani, G.; Di Tinco, R.; Pisciotta, A.; Bertoni, L.; Selleri, V.; Generali, L.; Marconi, A.; Mattioli, A.V.; Pinti, M. Dental pulp stem cells modulate inflammasome pathway and collagen deposition of dermal fibroblasts. Cells 2024, 13, 836. [Google Scholar] [CrossRef]
- Ding, D.; Liu, H.; Zhang, L.; Zhang, G.; Wei, Y.; Zhang, W.; Yang, X.; Li, M.; Yin, G.; Guo, W. AIM2 promotes the progression of HNSCC via STAT1 mediated transcription and IL-17/MAPK signaling. Cell. Signal. 2025, 127, 111545. [Google Scholar] [CrossRef]
- Jakobsen, M.R.; Paludan, S.R. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev. 2014, 25, 649–655. [Google Scholar] [CrossRef]
- Almine, J.F.; O’Hare, C.A.; Dunphy, G.; Haga, I.R.; Naik, R.J.; Atrih, A.; Connolly, D.J.; Taylor, J.; Kelsall, I.R.; Bowie, A.G. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 2017, 8, 14392. [Google Scholar] [CrossRef]
- Zhao, H.; Gonzalezgugel, E.; Cheng, L.; Richbourgh, B.; Nie, L.; Liu, C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis. 2015, 2, 46–56. [Google Scholar] [CrossRef]
- Alegre, B.F.; Alegre, M.M.; Hardy, M.S.; Robison, R.A.; O’Neill, K.L. Abstract 905: Localization of several potential biomarkers in various types of cancer. Cancer Res. 2011, 71, 905. [Google Scholar] [CrossRef]
- Kinsella, A.R.; Smith, D.; Pickard, M. Resistance to chemotherapeutic antimetabolites: A function of salvage pathway involvement and cellular response to DNA damage. Br. J. Cancer 1997, 75, 935–945. [Google Scholar] [CrossRef]
- Weber, G.; Lui, M.S.; Natsumeda, Y.; Faderan, M.A. Salvage capacity of hepatoma 3924A and action of dipyridamole. Adv. Enzym. Regul. 1983, 21, 53–69. [Google Scholar] [CrossRef]
- Kruszewska, H.; Misicka, A.; Chmielowiec, U. Biodegradation of DNA and nucleotides to nucleosides and free bases. Il Farm. 2004, 59, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Urso Pitassi, L.H.; Pearson, K.; Antônio de Assis, L.; Biesman, B.; Calomeni, M.; Bay-Aguilera, S.; Wyles, S.P. Polynucleotides in Skin Regeneration: Targeting the Adenosine A2A Receptor and Salvage Pathway. Dermatol. Surg. 2024, 50, S131–S134. [Google Scholar] [CrossRef] [PubMed]
- Galeano, M.; Bitto, A.; Altavilla, D.; Minutoli, L.; Polito, F.; Calò, M.; Lo Cascio, P.; Stagno d’Alcontres, F.; Squadrito, F. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen. 2008, 16, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Bitto, A.; Oteri, G.; Pisano, M.; Polito, F.; Irrera, N.; Minutoli, L.; Squadrito, F.; Altavilla, D. Adenosine receptor stimulation by polynucleotides (PDRN) reduces inflammation in experimental periodontitis. J. Clin. Periodontol. 2013, 40, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Pallio, G.; Bitto, A.; Pizzino, G.; Galfo, F.; Irrera, N.; Squadrito, F.; Squadrito, G.; Pallio, S.; Anastasi, G.P.; Cutroneo, G.; et al. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis. Front. Pharmacol. 2016, 7, 273. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.S.; Ben-Sahra, I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol. 2023, 33, 950–966. [Google Scholar] [CrossRef]
- Welter, E.; Elazar, Z. Autophagy mediates nonselective RNA degradation in starving yeast. EMBO J. 2015, 34, 131–133. [Google Scholar] [CrossRef]
- Ashihara, H.; Stasolla, C.; Loukanina, N.; Thorpe, T.A. Purine metabolism during white spruce somatic embryo development: Salvage of adenine, adenosine, and inosine. Plant Sci. 2001, 160, 647–657. [Google Scholar] [CrossRef]
- Lee, D.; Kim, M.J.; Park, H.J.; Rah, G.C.; Choi, H.; Anh, S.T.; Ji, G.H.; Kim, M.S.; Kim, G.; Shin, D.W. Current practices and perceived effectiveness of polynucleotides for treatment of facial erythema by cosmetic physicians. Skin Res. Technol. 2023, 29, e13466. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Kwon, S.H.; Kim, J.W.; Jeong, W.-J.; Cha, W.; Jung, Y.H.; Na, J.-I.; Huh, C.-H.; Shin, J.-W. Early postoperative injections of Polydeoxyribonucleotide prevent hypertrophic scarring after thyroidectomy: A randomized controlled trial. Adv. Wound Care 2023, 12, 361–370. [Google Scholar] [CrossRef]
- Sahragardjoonegani, B.; Beall, R.F.; Kesselheim, A.S.; Hollis, A. Repurposing existing drugs for new uses: A cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J. Pharm. Policy Pract. 2021, 14, 3. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef]
- Abushaaban, E.; Alhajj, R. A survey on computational methods used for drug repositioning. Netw. Model. Anal. Health Inform. Bioinform. 2025, 14, 8. [Google Scholar] [CrossRef]
- Athul, H.; Shaji, S.; Shabik, K.; Joseph, A. Harnessing the power of drug repurposing: A promising strategy for drug discovery and development. Natl. J. Pharmacol. Ther. 2024, 2, 123–128. [Google Scholar] [CrossRef]
- Jacomelli, G.; Micheli, V.; Peruzzi, L.; Notarantonio, L.; Cerboni, B.; Sestini, S.; Pompucci, G. Simple non-radiochemical HPLC-linked method for screening for purine metabolism disorders using dried blood spot. Clin. Chim. Acta 2002, 324, 135–139. [Google Scholar] [CrossRef]
- Di Pietro, V.; Perruzza, I.; Amorini, A.M.; Balducci, A.; Ceccarelli, L.; Lazzarino, G.; Barsotti, P.; Giardina, B.; Tavazzi, B. Clinical, biochemical and molecular diagnosis of a compound homozygote for the 254 bp deletion–8 bp insertion of the APRT gene suffering from severe renal failure. Clin. Biochem. 2007, 40, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Yabushita, T.; Goyama, S. Nucleic acid metabolism: The key therapeutic target for myeloid tumors. Exp. Hematol. 2025, 142, 104693. [Google Scholar] [CrossRef] [PubMed]
Predicted Indications | Experimental Models | Concentration Range of PDRN | Molecular Mechanisms | Pharmacological Effects | Ref. |
---|---|---|---|---|---|
Skin aging (Atrophodermia) | Human epidermal keratinocytes (HEKs) | 0–100 µg/mL | ↓ ERK | ↑ Cell proliferation ↑ Cell migration ↓ Inflammation (↓ TNF-α, IL-6, IL-1β, iNOS) | [75] |
Human dermal fibroblasts (HDFs) | 0–100 µg/mL | ↑ ERK | ↑ Cell proliferation ↑ Cell migration ↑ Collagen synthesis ↓ Collagen degradation (↓ MMP-1, 2, and 3) | ||
UVB-induced HRM-2 mice | 1 mM | ↓ NF-κB | ↑ Collagen synthesis (↑ COL1A1, total collagen and elastin) ↓ Collagen degradation (↓ MMP-2, 3, and 9) | [76] | |
Human dermal Fibroblasts (CCD-986sk) | 0–1000 µg/mL | - | ↑ Antioxidant activity ↑ Mitochondria biogenesis (↑ upregulation of mtDNA and mitochondrial density) ↓ Collagen degradation (↓ MMP-1) ↓ Elastin degradation (↓ Elastase activity) | [77] | |
H2O2/UVB-induced Human epidermal keratinocytes (HaCaT) | 0–1000 µg/mL | ↑ SIRT1 ↓ Autophagy signaling | ↓ Apoptosis ↓ Senescence (↓ SA-β-gal, p53, and p16) | [78] | |
Human skin fibroblasts | 0–100 μg/mL | A2A Receptor | ↑ Cell proliferation ↑ Intracellular Ca2+ | [79] | |
Dermatitis | Human epidermal keratinocytes (HaCaT) | 0–1 µM | ↑ Wnt/β-catenin | ↓ Anti-inflammation (IL-6) | [80] |
Imiquimod- induced Balb/c mice | 8 mg/kg | ↓ phospho-NF-κB ↑ Wnt/β-catenin | ↓ Inflammation (↓ TNF-α, IL-6, IL-12, IL-2) ↓ Immune cell infiltration ↑ skin conditions (↓ reduced squamous lesions, erythema, acanthosis, and epidermal thickness) | ||
Human epidermal keratinocytes (HaCaT) | 5% | ↑ FAK/AKT/MAPK | ↑ Skin barrier function (↑ FLG) | [37] | |
3D skin equivalents (KeraSkin™) | 0–50% | - | ↑ Skin barrier function (↑ TEER, FLG, E-Cadherin, p63) | ||
Melasma | Human epidermal melanocytes (NHEMs) | 1 mM | ↓ p53/MITF/TYR | ↓ Melanin synthesis (reduced tyrosinase activity and melanin content) | [76] |
Human neonatal epidermal melanocyte (Mel-Ab) | 0–200 μg/mL | ↓ MITF/TYR ↑ phospho-ERK ↑ phospho-AKT | ↓ Melanin synthesis (reduced tyrosinase activity and melanin content) | [81] | |
Mouse melanoma cells (B16F10) | 0–1000 μg/mL | ↓ MITF/TYR | ↓ Melanin synthesis (reduced tyrosinase activity and melanin content) | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Baek, S.; Shin, H.-J.; Kim, J.-S.; Gwon, H.-I.; Bae, S.; An, S. Polydeoxyribonucleotides as Emerging Therapeutics for Skin Diseases: Clinical Applications, Pharmacological Effects, Molecular Mechanisms, and Potential Modes of Action. Appl. Sci. 2025, 15, 10437. https://doi.org/10.3390/app151910437
Park S, Baek S, Shin H-J, Kim J-S, Gwon H-I, Bae S, An S. Polydeoxyribonucleotides as Emerging Therapeutics for Skin Diseases: Clinical Applications, Pharmacological Effects, Molecular Mechanisms, and Potential Modes of Action. Applied Sciences. 2025; 15(19):10437. https://doi.org/10.3390/app151910437
Chicago/Turabian StylePark, Seokmuk, Seyeol Baek, Hee-Jae Shin, Ji-Seon Kim, Hye-In Gwon, Seunghee Bae, and Sungkwan An. 2025. "Polydeoxyribonucleotides as Emerging Therapeutics for Skin Diseases: Clinical Applications, Pharmacological Effects, Molecular Mechanisms, and Potential Modes of Action" Applied Sciences 15, no. 19: 10437. https://doi.org/10.3390/app151910437
APA StylePark, S., Baek, S., Shin, H.-J., Kim, J.-S., Gwon, H.-I., Bae, S., & An, S. (2025). Polydeoxyribonucleotides as Emerging Therapeutics for Skin Diseases: Clinical Applications, Pharmacological Effects, Molecular Mechanisms, and Potential Modes of Action. Applied Sciences, 15(19), 10437. https://doi.org/10.3390/app151910437