Robust Face Recognition Under Challenging Conditions: A Comprehensive Review of Deep Learning Methods and Challenges
Abstract
1. Introduction
2. Literature Review
2.1. Classical Methods
2.1.1. Eigenface
2.1.2. Fisherfaces
2.2. Deep Neural Network Models
2.2.1. CNNs
2.2.2. Siamese Networks
2.2.3. Attention-Based
2.3. Deep Learning Architectures
2.3.1. FaceNet
2.3.2. CosFace
2.3.3. ArcFace
2.3.4. OpenFace
2.3.5. SFace
2.4. Face Detection
2.5. Research Gaps
3. Materials and Methods
3.1. Datasets
3.2. Evaluation Metrics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ROC AUC | Area Under the Receiver Operating Characteristic |
LBP | Local Binary Patterns |
PCA | Principal Component Analysis |
LDA | Linear Discriminant Analysis |
HE | Histogram Equalization |
MTCNN | Multi-Task Cascaded Convolutional Neural Networks |
SVM | Support Vector Machine |
CNN | Convolutional Neural Networks |
RNN | Recurrent Neural Networks |
LBPH | Local Binary Pattern Histogram |
MLP | Multilayer Perceptron |
G-RLBP | Robust LBP Guiding Pooling |
RLBP | Robust Local Binary Pattern |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
MAC | Memory Access Cost |
References
- Wu, G.; Tao, J.; Xu, X. Occluded Face Recognition Based on the Deep Learning. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 793–797. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Tan, M.; Yan, X.; Zhang, X.; Feng, H. Face Recognition with Partial Occlusion Based on Attention Mechanism. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Dalian, China, 17–19 September 2021; pp. 562–566. [Google Scholar] [CrossRef]
- Luo, Y. Research on Occlusion Face Detection Method in Complex Environment. In Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chengdu, China, 23–25 September 2022; pp. 1488–1491. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Jiang, K.; Zou, Q.; Tian, X.; Lu, T.; Han, Z. Joint Segmentation and Identification Feature Learning for Occlusion Face Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 10875–10888. [Google Scholar] [CrossRef]
- Khan, A.; Rauf, Z.; Sohail, A.; Khan, A.; Asif, H.; Asif, A.; Farooq, U. A survey of the Vision Transformers and their CNN-Transformer based Variants. Artif. Intell. Rev. 2023, 56, 2917–2970. [Google Scholar] [CrossRef]
- Shaikh, M.B.; Chai, D.; Islam, S.M.S.; Akhtar, N. From CNNs to Transformers in Multimodal Human Action Recognition: A Survey. ACM Trans. Multimedia Comput. Commun. Appl. 2024, 20, 1–24. [Google Scholar] [CrossRef]
- Otroshi Shahreza, H.; George, A.; Marcel, S. Knowledge Distillation for Face Recognition Using Synthetic Data with Dynamic Latent Sampling. IEEE Access 2024, 12, 187800–187812. [Google Scholar] [CrossRef]
- Boutros, F.; Siebke, P.; Klemt, M.; Damer, N.; Kirchbuchner, F.; Kuijper, A. PocketNet: Extreme Lightweight Face Recognition Network Using Neural Architecture Search and Multistep Knowledge Distillation. IEEE Access 2022, 10, 46823–46833. [Google Scholar] [CrossRef]
- Mishra, S.; Reza, H. A Face Recognition Method Using Deep Learning to Identify Mask and Unmask Objects. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 91–99. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, X.; Gao, Y.; Li, H.; Zhang, W. Research on Occlusion Perception Facial Feature Correlation Based on Less-Class Learning. Signal Image Video Process. (SIViP) 2025, 19, 616. [Google Scholar] [CrossRef]
- Naseem, S.; Rathore, S.S.; Kumar, S.; Gangopadhyay, S.; Jain, A. An Approach to Occluded Face Recognition Based on Dynamic Image-to-Class Warping Using Structural Similarity Index. Appl. Intell. 2023, 53, 28501–28519. [Google Scholar] [CrossRef]
- Zhao, R.; Hua, F.; Wei, B.; Li, C.; Ma, Y.; Wong, E.S.W.; Liu, F. A Review of Abnormal Crowd Behavior Recognition Technology Based on Computer Vision. Appl. Sci. 2024, 14, 9758. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar] [CrossRef]
- Ghaida, D.R.; Siedharta, V.V.; Hakim, U.; Mutijarsa, K.; Septiana, A.I.; Rosmansyah, Y. SVM-Classified FaceNet and Eigenface Models under Lighting and Occlusion Variations for Face Recognition. In Proceedings of the 2024 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September 2024; pp. 415–420. [Google Scholar] [CrossRef]
- Ho, H.-T.; Nguyen, L.V.; Le, T.H.T.; Lee, O.-J. Face Detection Using Eigenfaces: A Comprehensive Review. IEEE Access 2024, 12, 118406–118426. [Google Scholar] [CrossRef]
- EL Fadel, N. Facial Recognition Algorithms: A Systematic Literature Review. J. Imaging 2025, 11, 58. [Google Scholar] [CrossRef]
- Carević, A.; Slapničar, I. Fast Quaternion Algorithm for Face Recognition. Mathematics 2025, 13, 1958. [Google Scholar] [CrossRef]
- Phankokkruad, M. Convolutional neural network models for deep face recognition on limitation and interfering factors in image dataset. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 27–29 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rahman, M.F.; Sthevanie, F.; Ramadhani, K.N. Face Recognition in Low Lighting Conditions Using Fisherface Method and CLAHE Techniques. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Qu, L.; Pei, Y. A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness. Processes 2024, 12, 1382. [Google Scholar] [CrossRef]
- Khalili Mobarakeh, A.; Cabrera Carrillo, J.A.; Castillo Aguilar, J.J. Robust Face Recognition Based on a New Supervised Kernel Subspace Learning Method. Sensors 2019, 19, 1643. [Google Scholar] [CrossRef] [PubMed]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; pp. 41.1–41.12. Available online: http://www.bmva.org/bmvc/2015/papers/paper041/index.html (accessed on 9 July 2025).
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Li, C. Advancements and Challenges of Deep Learning in Facial Recognition. In Proceedings of the International Conference on Applied and Computational Engineering (ACE), Nanjing, China, 8 November 2024; Volume 82, pp. 45–53. [Google Scholar] [CrossRef]
- Chitrapu, P.; Morampudi, M.K.; Kalluri, H.K. Robust Face Recognition Using Deep Learning and Ensemble Classification. IEEE Access 2025, 13, 99957–99969. [Google Scholar] [CrossRef]
- Rehman, A.; Mujahid, M.; Elyassih, A.; AlGhofaily, B.; Bahaj, S.A.O. Comprehensive Review and Analysis on Facial Emotion Recognition: Performance Insights into Deep and Traditional Learning with Current Updates and Challenges. Comput. Mater. Continua 2025, 82, 41–72. [Google Scholar] [CrossRef]
- Siddiqui, M.M.; Valsalan, P. AI-Based Human Face Recognition System. J. Electr. Syst. 2024, 20, 357–362. [Google Scholar] [CrossRef]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 539–546. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Z.; Zhang, J.; Yan, W.; Ma, X. Face Recognition Based on Convolution Siamese Networks. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017. [Google Scholar]
- Satyagama, P.; Widyantoro, D.H. Low-Resolution Face Recognition System Using Siamese Network. In Proceedings of the 2020 7th International Conference on Advance Informatics: Concepts, Theory and Applications (ICAICTA), Tokoname, Japan, 20–21 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Vachhani, R.; Mandal, S.; Gohel, B. Low-Resolution Face Recognition Using Multi-Stream CNN in Siamese Framework. In Proceedings of the 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 1–3 November 2023; pp. 85–90. [Google Scholar] [CrossRef]
- Ouannes, L.; Khalifa, A.B.; Amara, N.E.B. Siamese Network for Face Recognition in Degraded Conditions. In Proceedings of the 2022 6th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sfax, Tunisia, 18–20 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, W.-W.; Li, Y.-J. Fast Face Recognition Model without Pruning. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 2563–2570. [Google Scholar] [CrossRef]
- Qin, L.; Wang, M.; Deng, C.; Wang, K.; Chen, X.; Hu, J.; Deng, W. SwinFace: A Multi-Task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2223–2234. [Google Scholar] [CrossRef]
- Yang, D.; Fu, M.; Liu, Z. Occluded Face Recognition Method Based on Multi-Scale Attention Mechanism. In Proceedings of the 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC), Xi’an, China, 26–28 April 2024; pp. 106–110. [Google Scholar] [CrossRef]
- Wen, R.; Yao, L.; Wan, W.; Chen, S. Occluded Face Recognition Based on Attention Mechanism and Damaged Feature Masking. In Proceedings of the 2023 16th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Dalian, China, 14–16 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Hörmann, S.; Zhang, Z.; Knoche, M.; Teepe, T.; Rigoll, G. Attention-Based Partial Face Recognition. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 2978–2982. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zou, H. Masked Face Recognition System Based on Attention Mechanism. Information 2023, 14, 87. [Google Scholar] [CrossRef]
- Fuad, M.T.H.; Fime, A.A.; Sikder, D.; Iftee, M.A.R.; Rabbi, J.; Al-Rakhami, M.S.; Gumaei, A.; Sen, O.; Fuad, M.; Islam, M.N. Recent Advances in Deep Learning Techniques for Face Recognition. IEEE Access 2021, 9, 99112–99142. [Google Scholar] [CrossRef]
- Sohail, M.; Shoukat, I.A.; Khan, A.U.; Fatima, H.; Jafri, M.R.; Yaqub, M.A.; Liotta, A. Deep Learning Based Multi Pose Human Face Matching System. IEEE Access 2024, 12, 26046–26061. [Google Scholar] [CrossRef]
- Learned-Miller, E.; Huang, G.B.; RoyChowdhury, A.; Li, H.; Hua, G. Labeled Faces in the Wild: A Survey. In Advances in Face Detection and Facial Image Analysis; Kawulok, M., Celebi, M.E., Smolka, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 189–248. [Google Scholar] [CrossRef]
- Autade, A.; Jagdale, R.; Gaikwad, V.; Yadav, S.; Patil, K.; Kulkarni, A. Automated Multi Face Recognition and Identification Using FaceNet and VGG-16 on Real-World Dataset for Attendance Monitoring System. In Proceedings of the 2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 24–25 November 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Y.; Liang, D.; Chen, Y.; Xie, H.; Wang, F.L.; Li, J.; Wei, M. Low-FaceNet: Face Recognition-Driven Low-Light Image Enhancement. IEEE Trans. Instrum. Meas. 2024, 73, 1–13. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive Margin Softmax for Face Verification. IEEE Signal Process. Lett. 2018, 25, 926–930. [Google Scholar] [CrossRef]
- Xu, X.; Du, M.; Guo, H.; Chang, J.; Zhao, X. Lightweight FaceNet Based on MobileNet. Int. J. Intell. Sci. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Yang, J.; Xue, N.; Kotsia, I.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 5962–5979. [Google Scholar] [CrossRef]
- Li, P.; Tu, S.; Xu, L. Deep Rival Penalized Competitive Learning for Low-Resolution Face Recognition. arXiv 2021, arXiv:2108.01286. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Xu, J. Robust Face Recognition Based on the Wing Loss and the ℓ1 Penalty. Electronics 2025, 14, 1736. [Google Scholar] [CrossRef]
- Jindal, A.K.; Chalamala, S.; Jami, S.K. Face Template Protection Using Deep Convolutional Neural Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 575–5758. [Google Scholar] [CrossRef]
- Liu, W.; Wen, Y.; Yu, Z.; Raj, B.; Song, L. SphereFace: Deep Hypersphere Embedding for Face Recognition via Angular Softmax Loss. arXiv 2017, arXiv:1704.08063. [Google Scholar]
- Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. MagFace: A Universal Representation for Face Recognition and Quality Assessment. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual/Online, 19–25 June 2021; pp. 14225–14234. [Google Scholar] [CrossRef]
- Hamza, A.; Butt, Z.H.; Arif, U.; Asad, S.M.A.; Naeem, M. Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring. arXiv 2025, arXiv:2507.01590. [Google Scholar] [CrossRef]
- Santoso, K.; Kusuma, G.P. Face Recognition Using Modified OpenFace. Procedia Comput. Sci. 2018, 135, 510–517. [Google Scholar] [CrossRef]
- Li, N.; Shen, X.; Sun, L.; Xiao, Z.; Ding, T.; Li, T.; Li, X. Chinese Face Dataset for Face Recognition in an Uncontrolled Classroom Environment. IEEE Access 2023, 11, 86963–86976. [Google Scholar] [CrossRef]
- Amos, B.; Ludwiczuk, B.; Satyanarayanan, M. OpenFace: A General-Purpose Face Recognition Library with Mobile Applications; CMU Galaxy Lab Technical Report CMU-CS-16-118; Carnegie Mellon University: Pittsburgh, PA, USA, 2016; Available online: http://elijah.cs.cmu.edu/DOCS/CMU-CS-16-118.pdf (accessed on 10 July 2025).
- Li, L.; Zhang, J.; Jiawei, F.; Li, S. An Incremental Face Recognition System Based on Deep Learning. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 238–241. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, W.; Hu, J.; Zhao, D.; Li, X.; Wen, D. SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition. IEEE Trans. Image Process. 2021, 30, 2587–2598. [Google Scholar] [CrossRef]
- Boutros, F.; Huber, M.; Luu, A.T.; Siebke, P.; Damer, N. SFace: Privacy-friendly and Accurate Face Recognition using Synthetic Data. In Proceedings of the 2022 IEEE International Joint Conference on Biometrics (IJCB), Abu Dhabi, United Arab Emirates, 10–13 October 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Boutros, F.; Huber, M.; Luu, A.T.; Siebke, P.; Damer, N. SFace2: Synthetic-Based Face Recognition with w-Space Identity-Driven Sampling. IEEE Trans. Biom. Behav. Identity Sci. 2024, 6, 290–303. [Google Scholar] [CrossRef]
- Yisihak, H.M.; Li, L. Advanced Face Detection with YOLOv8: Implementation and Integration into AI Modules. Open Access Library J. 2024, 11, 1–18. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Lu, Y.-F.; Liu, Y.-J.; Zhou, B.; Qiao, H. Long-Distance Tiny Face Detection Based on Enhanced YOLOv3 for Unmanned System. arXiv 2020, arXiv:2010.04421. [Google Scholar] [CrossRef]
- Adarsh, P.; Rathi, P.; Kumar, M. YOLO v3-Tiny: Object Detection and Recognition Using One Stage Improved Model. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 687–694. [Google Scholar] [CrossRef]
- Yan, H.; Wang, X.; Liu, Y.; Zhang, Y. A New Face Detection Method Based on Faster RCNN. J. Phys. Conf. Ser. 2021, 1754, 012209. [Google Scholar] [CrossRef]
- Liu, B.; Yu, H. A Lightweight and Accurate Face Detection Algorithm Based on RetinaFace. arXiv 2023, arXiv:2308.04340. [Google Scholar] [CrossRef]
- Owusu, E.; Abdulai, J.-D.; Zhan, Y. Face Detection Based on Multilayer Feed-Forward Neural Network and Haar Features. Softw. Pract. Exp. 2018, 49, 1237–1256. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, G.; Zheng, D.; Wu, H.; Pu, Y.; Xu, D. Research on Face Detection Method Based on Improved MTCNN Network. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP), Guangzhou, China, 10–12 May 2019. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, W.; Yang, G.; Luo, J.; Li, T.; He, J. CenterFace: Joint Face Detection and Alignment Using Face as Point. Sci. Program. 2020, 7845384. [Google Scholar] [CrossRef]
- Boutros, F.; Damer, N.; Kirchbuchner, F.; Kuijper, A. ElasticFace: Elastic Margin Loss for Deep Face Recognition. arXiv 2021, arXiv:2109.09416. [Google Scholar]
- Kim, J.; Lee, D. Facial Expression Recognition Robust to Occlusion and to Intra-Similarity Problem Using Relevant Subsampling. Sensors 2023, 23, 2619. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. arXiv 2018, arXiv:1804.07573. [Google Scholar]
- Li, S.; Lee, H.J. Effective Attention-Based Feature Decomposition for Cross-Age Face Recognition. Appl. Sci. 2022, 12, 4816. [Google Scholar] [CrossRef]
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef]
- Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. VGGFace2: A Dataset for Recognising Faces across Pose and Age. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 67–74. [Google Scholar] [CrossRef]
- Demirkus, M.; Graham, R.; Huang, J.B.; Huang, T.S. Hierarchical Temporal Graphical Model for Head Pose Estimation and Tracking in Video. Comput. Vis. Image Underst. 2015, 139, 37–55. [Google Scholar] [CrossRef]
- Cui, Z.; Xiao, S.; Feng, J.; Yan, S. Recurrently Target-Attending Tracking. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1449–1458. [Google Scholar] [CrossRef]
- Juhong, A.; Pintavirooj, C. Face Recognition Based on Facial Landmark Detection. In Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON), Hatyai, Thailand, 31 August–2 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Priya, K.K.; Deepa, M.M.I. Enhancing Occlusion Handling in Face Recognition: A Performance Analysis of Deep Learning Models. Int. J. Res. Publ. Rev. 2024, 5, 831–837. [Google Scholar]
- Zhao, W.; Chellappa, R.; Phillips, P.J.; Rosenfeld, A. Face recognition: A literature survey. ACM Comput. Surv. 2003, 35, 399–458. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Liang, J.; Jiang, D. Occlusion-Robust Facial Expression Recognition Based on Multi-Angle Feature Extraction. Appl. Sci. 2025, 15, 5139. [Google Scholar] [CrossRef]
- Kim, M.; Liu, F.; Jain, A.K.; Liu, X. Cluster and Aggregate: Face Recognition with Large Probe Set. In Proceedings of the 2022 Advances in Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- Zheng, X.; Fan, Y.; Wu, B.; Zhang, Y.; Wang, J.; Pan, S. Robust Physical-World Attacks on Face Recognition. arXiv 2021, arXiv:2109.09320. [Google Scholar] [CrossRef]
- Du, H.; Shi, H.; Liu, Y.; Zeng, D.; Mei, T. Towards NIR-VIS Masked Face Recognition. arXiv 2021, arXiv:2104.06761. [Google Scholar] [CrossRef]
- Sapakova, S.; Sapakov, A.; Yilibule, Y. A YOLOv5-Based Model for Real-Time Mask Detection in Challenging Environments. Procedia Comput. Sci. 2024, 231, 267–274. [Google Scholar] [CrossRef]
- Qiu, H.; Gong, D.; Li, Z.; Liu, W.; Tao, D. End2End Occluded Face Recognition by Masking Corrupted Features. arXiv 2021, arXiv:2108.09468. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.D.; Abdulazeez, A.M. Face Recognition Based on Deep Learning: A Comprehensive Review. Indones. J. Comput. Sci. 2024, 13, 3779–3795. Available online: https://ijcs.net/ijcs/index.php/ijcs/article/view/4037 (accessed on 18 June 2025). [CrossRef]
- Deng, J.; Guo, J.; Zhou, Y.; Yu, J.; Kotsia, I.; Zafeiriou, S. RetinaFace: Single-stage Dense Face Localisation in the Wild. arXiv 2019, arXiv:1905.00641. [Google Scholar]
- Qiu, H.; Gong, D.; Li, Z.; Liu, W.; Tao, D. End2End Occluded Face Recognition by Masking Corrupted Features. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6939–6952. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv 2017, arXiv:1710.09282. [Google Scholar]
- Cai, H.; Zhu, L.; Han, S. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. arXiv 2018, arXiv:1812.00332v2. [Google Scholar]
- Cai, R.; Yu, Z.; Kong, C.; Li, H.; Chen, C.; Hu, Y.; Kot, A.C. S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens. IEEE Trans. Inf. Forensics Secur. 2024, 19, 8385–8397. [Google Scholar] [CrossRef]
- Melzi, P.; Tolosana, R.; Vera-Rodriguez, R.; Kim, M.; Rathgeb, C.; Liu, X.; DeAndres-Tame, I.; Morales, A.; Fierrez, J.; Ortega-Garcia, J.; et al. FRCSyn-onGoing: Benchmarking and Comprehensive Evaluation of Real and Synthetic Data to Improve Face Recognition Systems. Inf. Fusion 2024, 107, 102322. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, J.; Li, S.; Hu, S.; Lei, J. Hierarchical Progressive Image Forgery Detection and Localization Method Based on UNet. Big Data Cogn. Comput. 2024, 8, 119. [Google Scholar] [CrossRef]
- Kortylewski, A.; Egger, B.; Schneider, A.; Gerig, T.; Morel-Forster, A.; Vetter, T. Analyzing and Reducing the Damage of Dataset Bias to Face Recognition with Synthetic Data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–20 June 2019; pp. 2261–2268. [Google Scholar] [CrossRef]
- Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments; Technical Report 07-49; University of Massachusetts: Amherst, MA, USA, 2007. [Google Scholar]
- Zheng, T.; Deng, W. Cross-Pose LFW (CPLFW): A Database for Studying Cross-Pose Face Recognition in Unconstrained Environments; Technical Report; Beijing University of Posts and Telecommunications: Beijing, China, 2018; Available online: http://www.whdeng.cn/CPLFW/Cross-Pose-LFW.pdf (accessed on 17 June 2025).
- Moses, R.; Zhang, Q.; Venkatesh, K.; Alyafeai, J.; Goh, G.; Phillips, P.; de Oliveira, L.; Bowyer, K.W. AgeDB: The First Large-Scale Temporally Labelled Face Database; Technical Report; Department of Computer Science, University of Central Florida: Orlando, FL, USA, 2017; Available online: https://complexity.cecs.ucf.edu/agedb/ (accessed on 23 June 2025).
- Zheng, T.; Deng, W.; Hu, J. Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments; Technical Report; Beijing University of Posts and Telecommunications: Beijing, China, 2017; Available online: http://www.whdeng.cn/CALFW/index.html?reload=true (accessed on 28 June 2025).
- Cheng, Z.; Zhu, X.; Gong, S. QMUL-SurvFace: Surveillance Face Recognition Challenge Dataset; Technical Report; Queen Mary University of London: London, UK, 2018; Available online: https://qmul-survface.github.io/ (accessed on 28 June 2025).
- Phillips, P.J.; Flynn, P.J.; Scruggs, T.; Bowyer, K.W.; Chang, J.; Hoffman, K.; Marques, J.; Min, J.; Worek, W. Overview of the Face Recognition Grand Challenge. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 947–954. [Google Scholar] [CrossRef]
- Buettner, D.J. Biometric Sample Synthesis. In Encyclopedia of Biometrics; Li, S.Z., Jain, A.K., Eds.; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Jain, A.K.; Ross, A.; Prabhakar, S. An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef]
- Grother, P.; Quinn, G.W.; Phillips, P.J. Report on the Evaluation of 2D Still-Image Face Recognition Algorithms; Technical Report NISTIR 7794; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- Mahmoud, M.; Kasem, M.S.; Kang, H.-S. A Comprehensive Survey of Masked Faces: Recognition, Detection, and Unmasking. Appl. Sci. 2024, 14, 8781. [Google Scholar] [CrossRef]
- Jain, A.K.; Ross, A.; Nandakumar, K. Introduction to Biometrics; Springer: New York, NY, USA, 2011; ISBN 978-0-387-77325-4. [Google Scholar]
Research Gap | Explanation |
---|---|
Insufficient resistance to extreme shooting conditions [76,77,78] | Modern models show reduced accuracy in the following:
|
Limited ability to process partial facial occlusion [79,80,81] |
|
Insufficient attention to multimodality and fusion approaches [82,83,84] |
|
Limited possibilities of generalization to new domains [85,86,87] |
|
Insufficient diversity and realism in the available datasets [52,88,89] |
|
Lack of interpretability and explainability of models [47,90,91] |
|
Limited Research in Computing Resource Constraints (Edge AI) [92,93,94] |
|
Lack of a unified methodology for assessing sustainability [95,96,97] |
|
Dataset | Number of Images | Example |
---|---|---|
Labeled Faces in the Wild [98] | 13,233 (5749 people) | |
Cross-Pose LFW [99] | 3000 | |
AgeDB-30 [100] | 16,488 (568 distinct subjects) | |
Cross-Age LFW [101] | 3000 | |
QMUL-SurvFace [102] | 463,507 (15,573 distinct subjects) |
Dataset | Model | ROC AUC | EER | Threshold | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|
LFW | FaceNet | 0.9761 | 0.0590 | −1.1891 | 0.9407 | 0.9410 | 0.9403 | 0.9406 |
ArcFace | 0.9658 | 0.0710 | −1.2469 | 0.9290 | 0.9290 | 0.9290 | 0.9290 | |
OpenFace | 0.8141 | 0.2677 | −0.9817 | 0.7323 | 0.7323 | 0.7323 | 0.7323 | |
SFace | 0.9272 | 0.1390 | −1.2500 | 0.8608 | 0.8608 | 0.8608 | 0.8608 | |
CPLFW | FaceNet | 0.7405 | 0.3159 | −1.1740 | 0.6837 | 0.6818 | 0.6834 | 0.6826 |
ArcFace | 0.6894 | 0.3451 | −1.2861 | 0.6458 | 0.6436 | 0.6456 | 0.6446 | |
OpenFace | 0.5345 | 0.4760 | −1.0282 | 0.5242 | 0.5217 | 0.5243 | 0.5230 | |
SFace | 0.6043 | 0.4269 | −1.3117 | 0.5730 | 0.5710 | 0.5728 | 0.5719 | |
AgeDB−30 | FaceNet | 0.9504 | 0.1092 | −1.2071 | 0.8880 | 0.8880 | 0.8880 | 0.8880 |
ArcFace | 0.9504 | 0.1157 | −1.2702 | 0.8845 | 0.8844 | 0.8847 | 0.8845 | |
OpenFace | 0.5689 | 0.4563 | −1.0071 | 0.5435 | 0.5435 | 0.5433 | 0.5434 | |
SFace | 0.8884 | 0.1957 | −1.2478 | 0.8043 | 0.8043 | 0.8043 | 0.8043 | |
CALFW | FaceNet | 0.9116 | 0.1603 | −1.2352 | 0.8393 | 0.8395 | 0.8389 | 0.8392 |
ArcFace | 0.8848 | 0.1870 | −1.1950 | 0.8130 | 0.8129 | 0.8129 | 0.8129 | |
OpenFace | 0.5711 | 0.4463 | −0.9524 | 0.5534 | 0.5534 | 0.5532 | 0.5533 | |
SFace | 0.8143 | 0.2587 | −1.2318 | 0.7413 | 0.7412 | 0.7412 | 0.7412 | |
QMUL−SurvFace | FaceNet | 0.6368 | 0.4030 | −0.4023 | 0.5971 | 0.5971 | 0.5971 | 0.5971 |
ArcFace | 0.6177 | 0.4056 | −1.2630 | 0.5866 | 0.5862 | 0.5865 | 0.5863 | |
OpenFace | 0.6270 | 0.4056 | −0.6985 | 0.5944 | 0.5944 | 0.5944 | 0.5944 | |
SFace | 0.7078 | 0.3521 | −1.2414 | 0.6479 | 0.6479 | 0.6479 | 0.6479 |
Architecture | AgeDB-30 | CALFW | CPLFW | LFW | QMUL-SurvFace |
---|---|---|---|---|---|
FaceNet | |||||
ArcFace | |||||
OpenFace | |||||
SFace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhalgas, A.; Amirgaliyev, B.; Sovet, A. Robust Face Recognition Under Challenging Conditions: A Comprehensive Review of Deep Learning Methods and Challenges. Appl. Sci. 2025, 15, 9390. https://doi.org/10.3390/app15179390
Zhalgas A, Amirgaliyev B, Sovet A. Robust Face Recognition Under Challenging Conditions: A Comprehensive Review of Deep Learning Methods and Challenges. Applied Sciences. 2025; 15(17):9390. https://doi.org/10.3390/app15179390
Chicago/Turabian StyleZhalgas, Aidana, Beibut Amirgaliyev, and Adil Sovet. 2025. "Robust Face Recognition Under Challenging Conditions: A Comprehensive Review of Deep Learning Methods and Challenges" Applied Sciences 15, no. 17: 9390. https://doi.org/10.3390/app15179390
APA StyleZhalgas, A., Amirgaliyev, B., & Sovet, A. (2025). Robust Face Recognition Under Challenging Conditions: A Comprehensive Review of Deep Learning Methods and Challenges. Applied Sciences, 15(17), 9390. https://doi.org/10.3390/app15179390