The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects
Abstract
:1. The Lower Limit of Effective Reservoir Burial Depth for Clastic Rocks
2. Formation Mechanisms of Effective Reservoir in Ultra-Deep Clastic Rocks
2.1. Sedimentation Lays the Foundation for Mineral Fabric and Primary Porosity of Reservoirs
2.2. Multiple Geological Processes Favor the Formation and Preservation of High-Quality Clastic Reservoirs
2.2.1. Inhibition of Quartz Cement Growth by Grain Coatings
2.2.2. Inhibitory Effect of Overpressure on Compaction
2.2.3. Inhibitory Effect of Low Geothermal Field on Diagenetic Evolution
2.2.4. Protective Role of Hydrocarbon Charging on Porosity
2.2.5. Pore-Increasing Effect of Dissolution
2.3. Structural Fracturing Enhances the Permeability of Clastic Reservoirs
3. Exploration Directions for Deep to Ultra-Deep Clastic Rocks
3.1. Marine Sedimentary Systems
3.2. Continental Depositional System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, G.Y.; Zhang, S.C. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Pet. Sin. 2009, 30, 793–802, (In Chinese with English Abstract). [Google Scholar]
- Pang, X.Q.; Jia, C.Z.; Wang, W.Y. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Pet. Sci. 2015, 12, 1–53. [Google Scholar] [CrossRef]
- Guo, H.J.; Si, X.Q.; Yuan, B.; Peng, B.; Ji, D.S.; Chen, X.G. The characteristics and main controlling factors of ultra-deep sandstone reservoir in the middle part of the southern margin of Junggar Basin. Mar. Orig. Pet. Geol. 2022, 27, 313–324, (In Chinese with English Abstract). [Google Scholar]
- Guo, X.S.; Hu, Z.Q.; Li, S.J.; Zheng, L.J.; Zhu, D.Y.; Liu, J.L.; Shen, B.J.; Du, W.; Yu, L.J.; Liu, Z.Q.; et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata. Pet. Sci. Bull. 2023, 8, 461–474, (In Chinese with English Abstract). [Google Scholar]
- Ehrenberg, S.N.; Nadeau, P.H. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bull. 2005, 89, 435–445. [Google Scholar] [CrossRef]
- Zhong, D.K.; Zhu, X.M.; Wang, H.J. Characteristics and formation mechanism analysis of deep quality clastic rock reservoirs in China. Sci. Sin. (Terrae) 2008, 38, 11–18, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.; Zhang, R.H.; Ren, K.X.; Luo, P.; Liu, C. Prediction of the lower limit of burial depth for effective reservoirs in the Dabei-Kelasu deep structural belt of Kuqa Depression. Acta Pet. Sin. 2011, 32, 212–218, (In Chinese with English Abstract). [Google Scholar]
- Li, J.; She, Y.Q.; Gao, Y.; Yang, G.R.; Li, M.P.; Yang, S. Onshore deep and ultra-deep natural gas exploration fields and potentials in China. China Pet. Explor. 2019, 24, 403–417, (In Chinese with English Abstract). [Google Scholar]
- Zhu, G.Y.; Wang, H.T.; Weng, N.; Yang, H.J.; Zhang, K.; Liao, F.R.; Yuan, N. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa depression, Tarim Basin, China. Mar. Pet. Geol. 2015, 65, 103–113. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, G.W.; Liu, B.C.; Ai, Y.; Cai, D.Y.; Yang, S.W.; Liu, H.K.; Xie, Y.Q.; Chen, K.J. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. J. Pet. Sci. Eng. 2022, 211, 110–180. [Google Scholar] [CrossRef]
- Cao, Y.C.; Yuan, G.H.; Yang, H.J.; Wang, Y.Z.; Liu, K.Y.; Zan, N.M.; Xi, K.L.; Wang, J. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Pet. Sin. 2022, 43, 112–140, (In Chinese with English Abstract). [Google Scholar]
- Deng, Y.; Gao, C.L.; Wang, J.; Liu, M.; Meng, Y.L.; Ren, Y.; Liu, K.; Wang, K. Deep reservoir characteristics and physical property controlling factors of Qigu Formation in western section of southern margin of Junggar Basin. Mod. Geol. 2023, 25, 1–17, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.; Gao, C.L.; Bai, L.; Xiang, B.L.; Liu, J.; Xian, B.Z.; Lian, L.X.; Liu, K. Diagenesis and pore evolution of Cretaceous Qingshuihe Formation reservoir in western section of southern margin of Junggar Basin. Pet. Geol. Exp. 2023, 45, 632–645, (In Chinese with English Abstract). [Google Scholar]
- Sun, L.D.; Zou, C.N.; Zhu, R.K.; Zhang, Y.H.; Zhang, S.C.; Zhang, B.M.; Zhu, G.Y.; Gao, Z.Y. Formation, distribution and potential of deep hydrocarbon resources in China. Pet. Explor. Dev. 2013, 40, 641–649, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Bohi, D.R. Technological improvement in petroleum exploration and development. In Productivity in Natural Resource Industries; Routledge: London, UK, 2014; pp. 73–108. [Google Scholar]
- Scotchman, I.C.; Doré, A.G.; Spencer, A.M. Petroleum Systems and Results of Exploration on the Atlantic Margins of the UK, Faroes & Ireland: What Have We Learnt? Petroleum Geology Conference Series; Geological Society of London: London, UK, 2018; Volume 8, pp. 187–197. [Google Scholar]
- Wang, C.; Shao, H.M.; Hong, S.X.; Guan, Y.H.; Teng, H.D.; Jia, P.T.; Xue, Y.F. The lower limits of physical properties for deep clastic reservoirs in north Songliao basin and its relationship with microscopic features. Pet. Geol. Oilfield Dev. Daqing 2007, 26, 18–20+24, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.Z.; Cao, Y.C. Lower Property Limit and Controls on Deep Effective Clastic Reservoirs of Paleogene in Chezhen Depression. Acta Sedimentol. Sin. 2010, 28, 752–761, (In Chinese with English Abstract). [Google Scholar]
- Ma, Y.S.; Cai, X.Y.; Zhao, P.R.; Luo, Y.; Zhang, X.F. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin. Acta Pet. Sin. 2010, 31, 347–354, (In Chinese with English Abstract). [Google Scholar]
- Song, Y.; Zhao, M.J.; Fang, S.H.; Xie, H.W.; Liu, S.B.; Zhuo, Q.G. Dominant factors of hydrocarbon distribution in the foreland basins, central and western China. Pet. Explor. Dev. 2012, 39, 285–294. [Google Scholar] [CrossRef]
- Huang, H.P.; Zhang, S.C.; Su, J. Palaeozoic oil-source correlation in the Tarim Basin, NW China: A review. Org. Geochem. 2016, 94, 32–46. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.Z.; Pan, Z.J.; Xu, H.; Tao, S.; Liu, Y.F.; Ren, P.F. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development. J. Nat. Gas Sci. Eng. 2018, 53, 394–402. [Google Scholar] [CrossRef]
- Chen, G.; Hu, Z.Q. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin. J. China Coal Soc. 2018, 43, 1572–1579, (In Chinese with English Abstract). [Google Scholar]
- Guo, X.S.; Hu, D.F.; Huang, R.C.; Wei, Z.H.; Duan, J.B.; Wei, X.F.; Fan, X.J.; Mou, Z.W. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect. Nat. Gas Ind. 2020, 7, 419–432, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hu, S.Y.; Wang, X.J.; Cao, Z.L.; Li, J.Z.; Gong, D.Y.; Xu, Y. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China. Pet. Explor. Dev. 2020, 47, 266–279. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Q.H.; Yang, H.J.; Li, Y. Petroleum Exploration History and Enlightenment in Tarim Basin. Xinjiang Pet. Geol. 2021, 42, 272–282, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.; Song, Y.; He, W.J.; Zhao, L.; Yang, H.B.; Zhao, C.Y.; Zheng, M.L.; Sun, S.; Fei, L.Y. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin. Oil Gas Geol. 2022, 43, 132–148, (In Chinese with English Abstract). [Google Scholar]
- Luo, X.R.; Hu, C.Z.; Xiao, Z.Y.; Zhao, J.; Zhang, B.S.; Yang, W.; Zhao, F.Y.; Lei, Y.H.; Zhang, L.K. Effects of carrier bed heterogeneity on hydrocarbon migration. Mar. Pet. Geol. 2015, 68, 120–131. [Google Scholar] [CrossRef]
- Luo, X.R.; Zhang, L.Q.; Zhang, L.K.; Lei, Y.H.; Cheng, M.; Shi, H.; Cao, B.F. Heterogeneity of clastic carrier bed and hydrocarbon migration and accumulation. Acta Pet. Sin. 2020, 41, 253–272, (In Chinese with English Abstract). [Google Scholar]
- Hu, Z.Q.; Zheng, H.R.; Yin, W.; Liu, C.Y.; Sun, C.X.; Xiao, C.; Wang, F.G.; Li, S.; Chen, C.F. Comparison of diagenetic characteristics and pore evolution in outcrops and cores of tight sandstone reservoirs in the Triassic Yanchang Formation, the Ordos Basin, China. AAPG Bull. 2020, 104, 2429–2452. [Google Scholar] [CrossRef]
- Zhang, X.W.; Pang, X.Q.; Li, C.J.; Yu, J.W.; Wang, W.Y.; Xiao, H.Y.; Li, C.R.; Yu, J.T. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of Gulf of Mexico Basin. Acta Pet. Sin. 2021, 42, 466–480, (In Chinese with English Abstract). [Google Scholar]
- Shi, C.Q.; Wang, Z.T.; Zhu, W.H.; Jiang, J.; Zhang, H.F.; Zhou, S.Y.; Lou, H.; Zuo, X.J.; Li, G.; Wang, Z. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2020, 31, 1687–1699, (In Chinese with English Abstract). [Google Scholar]
- Wang, K.; Zhang, R.H.; Tang, Y.; Yu, Z.F.; Yang, Z.; Tang, Y.G.; Zhou, L. Structural diagenesis and reservoir prediction of Lower Jurassic Ahe Formation in the northern structural belt of Kuqa depression. Acta Pet. Sin. 2022, 43, 925–940, (In Chinese with English Abstract). [Google Scholar]
- Sun, J.; You, X.C.; Zhang, Q.; Xue, J.J.; Chang, Q.S. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar Basin. Nat. Gas Geosci. 2023, 34, 240–252, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zou, C.N.; Tao, S.Z.; Zhang, X.X.; He, D.B.; Zhou, C.M.; Gao, X.H. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s Large Gas Provinces of low porosity and permeability. Sci. China (Ser. D Earth Sci.) 2009, 52, 1068–1090. [Google Scholar] [CrossRef]
- Qi, Y.K.; Lin, H.X.; Zhang, F.S. The Relationship between Diagenetic Evolution and Hydrocarbon Charge in Deep Tight Reservoirs: A Case Study from Kepingtage Formation of S9 Well Block in Tarim Basin. Geofluids 2021, 2021, 6665237. [Google Scholar] [CrossRef]
- Luo, X.R.; Zhang, L.K.; Zhang, L.Q.; Liu, N.G.; Yan, J.Z.; Lei, Y.H.; Qi, Y.K.; Li, J.; Cheng, M.; Yan, Y.M.; et al. Effectiveness of deep-buried clastic reservoir beds and the evaluation methodology. J. Northwest Univ. (Nat. Sci. Ed.) 2022, 52, 968–986, (In Chinese with English Abstract). [Google Scholar]
- Aase, N.E.; Bjørkum, P.A.; Nadeau, P.H. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bull. 1996, 80, 1654–1673. [Google Scholar]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Grant, N.T.; Middleton, A.J.; Archer, S. Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history. AAPG Bull. 2014, 98, 1111–1143. [Google Scholar] [CrossRef]
- Cao, Y.C.; Yuan, G.H.; Wang, Y.Z.; Zan, N.M.; Liu, K.Y.; Xi, K.L. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance. Sci. China Earth Sci. 2022, 65, 1673–1703. [Google Scholar] [CrossRef]
- Dowey, P.J.; Hodgson, D.M.; Worden, R.H. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Mar. Pet. Geol. 2012, 32, 63–75. [Google Scholar] [CrossRef]
- Pan, R.; Zhu, X.M.; Wang, X.X.; Zhang, J.F. Advancement on formation mechanism of deep effective clastic reservoir. Lithol. Reserv. 2014, 26, 73–80, (In Chinese with English Abstract). [Google Scholar]
- Dutton, S.P.; Hutton, M.E.; Ambrose, W.A.; Childers, A.T.; Loucks, R.G. Preservation of reservoir quality by chlorite coats in deep Tuscaloosa sandstones, central Louisiana, USA. Gulf Coast Assoc. Geol. Soc. J. 2018, 7, 46–58. [Google Scholar]
- Wang, Z.N.; Luo, X.R.; Liu, K.Y.; Fan, Y.C.; Wang, X.Z. Influence of chlorite on wettability in tight sandstone reservoir of Yanchang Formation of Upper Triassic in Ordos Basin. Sci. Sin. (Terrae) 2021, 51, 1123–1134, (In Chinese with English Abstract). [Google Scholar]
- Qi, Y.K.; Luo, X.R.; He, Y.H.; Dang, H.L.; Liu, N.G.; Lei, Y.H.; Zhang, L.K. Experimental studies on oil imbibition in mixed-wetting porous medium. Chin. J. Geol. 2015, 50, 1208–1217, (In Chinese with English Abstract). [Google Scholar]
- Qi, Y.K.; Luo, X.R. Mechanical study of the effect of fractional-wettability on multiphase fluid flow. Int. J. Multiph. Flow 2017, 93, 205–212. [Google Scholar] [CrossRef]
- Zhou, D.S.; Liu, G.X.; Ye, J.; Jia, C.S. Study on the mechanisms for preserving anomalously high porosity in deep buried sandstone reservoirs. Pet. Geol. Exp. 2004, 26, 40–46, (In Chinese with English Abstract). [Google Scholar]
- Walderhaug, O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn field, northern North Sea. AAPG Bull. 2000, 84, 1325–1339. [Google Scholar] [CrossRef]
- Lander, R.H.; Bonnell, L.M.; Larese, R.E. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates. AAPG Bull. 2008, 92, 1537–1563. [Google Scholar] [CrossRef]
- Duan, W.; Chen, J.D.; Luo, C.F.; Tian, J.Q.; Guo, L.; Lin, J.F. Effects of formation overpressure on diagenesis in the Dongfang block of Yinggehai Basin. Acta Pet. Sin. 2013, 34, 1049–1059, (In Chinese with English Abstract). [Google Scholar]
- Guo, X.W.; Liu, K.Y.; Song, Y.; Zhao, M.J.; Liu, S.B.; Zhuo, Q.G.; Lu, X.S. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa Depression, Tarim Basin. Oil Gas Geol. 2016, 37, 935–943, (In Chinese with English Abstract). [Google Scholar]
- Luo, X.R.; Yang, H.J.; Wang, Z.L.; Zhang, L.Q.; Zhang, L.K.; Lei, Y.H.; Zhou, L.; Zhang, B.S.; Yan, Y.M.; Cao, B.F.; et al. Heterogeneity characteristics of deep-ultra-deep clastic rock reservoir and hydrocarbon accumulation model. Acta Geol. Sin. 2023, 97, 2802–2819, (In Chinese with English Abstract). [Google Scholar]
- Jiang, L.Z.; Niu, J.Y.; Zhang, Q.C.; Xu, G.M.; Meng, Y.L.; Xiao, L.H. Major Factors Analysis on Controlling the Formation of Favorable Reservoir in Deep Level of Bohai Bay Basin. Geol. Rev. 2009, 55, 73–78, (In Chinese with English Abstract). [Google Scholar]
- Feng, J.; Gao, Z.Y.; Cui, J.G.; Zhou, C.M. The Exploration Status and Research Advances of Deep and Ultra-Deep Clastic Reservoirs. Adv. Earth Sci. 2016, 31, 718–736, (In Chinese with English Abstract). [Google Scholar]
- Liang, Y.; Liu, X.; Wu, N.; Feng, Y.; Wang, J. Hydrocarbon Accumulation Model Controlled by Overpressure Evolution in the Kelasu Thrust Belt of the Kuqa Depression, NW China. Lithosphere 2022, 2022, 7352101. [Google Scholar] [CrossRef]
- Mejia, P.; Royer, J.J.; Fraboulet, J.G.; Zielińska, A. 4D Geomodeling: A Tool for Exploration—Case of the Kupferschiefer in the Lubin Region, Poland. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe; Weihed, P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–187. [Google Scholar]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Hermana, M.; Ghosh, D.P.; Sum, C.W. Discriminating lithology and pore fill in hydrocarbon prediction from seismic elastic inversion using absorption attributes. Lead. Edge 2017, 36, 902–909. [Google Scholar] [CrossRef]
- Ramadan, M.A.M.; Abd, E.l.; Hamed, A.G.; Badran, F.; Nooh, A.Z. Relation between hydrocarbon saturation and pore pressure evaluation for the Amal Field area, Gulf of Suez, Egypt. Egypt. J. Pet. 2019, 28, 1–9. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, W.H.; Guo, Y.Q. Effects of Oil Emplacement on Diagenetic Evolution of Sandstone Reservoir in Yanchang Formation, Southeastern Ordos Basin. Geol. J. China Univ. 2011, 17, 594–604, (In Chinese with English Abstract). [Google Scholar]
- Cao, B.F.; Sun, W. Diagenesis of Chang6 Reservoir in Xuecha Block of Wuqi Area. Nat. Gas Geosci. 2011, 22, 951–960, (In Chinese with English Abstract). [Google Scholar]
- Lambert, L.; Durlet, C.; Loreau, J.P.; Marnier, G. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Mar. Pet. Geol. 2006, 23, 79–92. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.; Walderhaug, O.; Bjørlykke, K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion. AAPG Bull. 2012, 96, 217–233. [Google Scholar] [CrossRef]
- Baqués, V.; Ukar, E.; Laubach, S.E.; Forstner, S.R.; Fall, A. Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim Basin, NW China. Geofluids 2020, 2020, 9037429. [Google Scholar] [CrossRef]
- Rabaev, R.U.; Chibisov, A.V.; Kotenev, A.Y.; Kotenev, M.Y.; Efimov, E.R. Mathematical modelling of carbonate reservoir dissolution and prediction of the controlled hydrochloric acid treatment efficiency. Sci. Work. NIPI Oil Gas SOCAR 2021, 2, 40–46. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhu, G.Y.; Liu, Q.F.; Zhang, S.C. Main control factors of pore development in deep marine carbonate reservoirs. Nat. Gas Geosci. 2007, 18, 514–521, (In Chinese with English Abstract). [Google Scholar]
- Tan, K.J.; Zhang, F.; Zhao, Y.C.; Pan, J.G.; Yin, L. Characteristics and genetic mechanism of volcanic dissolved pore in northwestern margin of Junggar Basin. Lithol. Reserv. 2010, 22, 22–25, (In Chinese with English Abstract). [Google Scholar]
- Bjørlykke, K.; Jahren, J. Open or closed geochemical system during diagenesis in sedimentary basin: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bull. 2012, 96, 2193–2214. [Google Scholar] [CrossRef]
- Zeng, L.B.; Jiang, J.W.; Yang, Y.L. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng oilfield, Nanxiang Basin, China. Mar. Pet. Geol. 2010, 27, 1642–1650. [Google Scholar] [CrossRef]
- Guerriero, V.; Mazzoli, S.; Iannace, A.; Vitale, S.; Carravetta, A.; Strauss, C.A. permeability model for naturally fractured carbonate reservoirs. Mar. Pet. Geol. 2013, 40, 115–134. [Google Scholar] [CrossRef]
- Lavenu, A.P.C.; Lamarche, J.; Salardon, R.; Gallois, A.; Marié, L.; Gauthier, B.D.M. Relating background fractures to diagenesis and rock physical properties in a platform-slope transect. Example of the Maiella Mountain (central Italy). Mar. Pet. Geol. 2014, 51, 2–19. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhang, R.H.; Zhao, J.L.; Wang, K.; Wang, B.; Ceng, Q.L.; Liu, C. Characteristics and Evaluation of Fractures in Ultra-deep Tight Sandstone Reservoir: Taking Keshen Gasfield in Tarim Basin, NW China as an Example. Nat. Gas Geosci. 2014, 25, 1735–1745, (In Chinese with English Abstract). [Google Scholar]
- Huang, R.C.; Liu, R.B.; Liu, M.; Cao, H.Y.; Su, S.; Du, H.Q. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan Basin. Oil Gas Geol. 2021, 42, 873–883, (In Chinese with English Abstract). [Google Scholar]
- Ma, L.Y.; Qiu, G.Q.; Hu, C.Z.; Xu, S.L.; Chen, C.F.; Li, S. Reservoir Forming Mechanism of the Yanchang Tight Sandstone in Honghe Oilfield, Ordos Basin. Acta Sedimentol. Sin. 2022, 40, 1762–1773, (In Chinese with English Abstract). [Google Scholar]
- Ding, W.l.; Wang, X.h.; Hu, Q.j.; Yin, S.; Cao, X.Y.; Liu, J.J. Progress in Tight Sandstone Reservoir Fractures Research. Adv. Earth Sci. 2015, 30, 737–750, (In Chinese with English Abstract). [Google Scholar]
- Zeng, L.B.; Li, X.Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bull. 2009, 93, 461–477. [Google Scholar]
Country | Basins | Basin Type | Reservoir Age | Lithology | HC Type | Depth | Recoverable Crude Oil | Gas (tcm) | Recoverable Crude Oil 1 | Gas (tcf) | Total (MBOE) |
---|---|---|---|---|---|---|---|---|---|---|---|
(×109 t) | (bb) | ||||||||||
China | Tarim Basin | Craton | Ordovician | Limestone | Oil, gas | 7300 | 6.77 | 9.7 | 49.6 | 343 | 109 |
Junggar Basin | Craton | Jurassic | Conglomerate sandstone | Oil, gas | 5000 | 2.84 | 2.24 | 20.8 | 79 | 34 | |
Sichuan Basin | Craton | Permian–Triassic | Dolomite | Gas | 6200–7000 | 0.0001613 | 38.11 | 0.001 | 1346 | 232 | |
Ordos Basin | Craton | Triassic | Sandstone | Gas | 5000 | - | 0.1 | - | 4 | 1 | |
Iraq | West Qurna Field | Foreland Basin | Cretaceous | Limestone | Oil, gas | 3447 | - | - | 15–21 | - | 228,000 |
Qatar | North and Ras Laffan Field | Passive Margin | Cretaceous | Sandstone | Gas, condensate | 3462 | - | 49.8 | - | 1760 | 316,800 |
Russia | Urengoy Field | Craton | Cretaceous | Sandstone | Gas, condensate | 1000–4000 | 1.2 | 10.5 | 8.8 | 385 | 68,000 |
Kuwait | Mesopotamian Foredeep Basin | Foreland Basin | Cretaceous | Dolomite | Oil, gas | 3500–5000 | - | 1.8 | 66–72 | 63.6 | 85,000 |
Basin | Geological Age | Depth (m) | Depositional Environment | Mineral Composition (%) | Grain Size | Sorting | Roundness | Porosity (%) | Permeability (10−3 μm2) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Lithic Fragments | |||||||||
Tarim | K | 5500–8200 | Braided River Delta | 55 | 20 | 25 | Medium/Fine Sandstone | Good | Subangular/ Subrounded | 5.4–26 (20.4) | |
D | 4500–6000 | Coastal Sandbar | 94 | 4 | 2 | Medium/Fine Sandstone | Good | Subangular/ Subrounded | 5.2–21.8 (18.3) | 0.1–2000 (200) | |
S | 5000–6500 | Offshore Sandbar | 41 | 6 | 53 | Fine Sandstone | Good/Moderate | Subangular/ Subrounded | 1.4–9.2 (6.3) | 0.01–0.84 (0.2) | |
Junggar | J | 3500–6500 | Braided River Delta | 41 | 19 | 40 | Medium/Fine Sandstone | Good/Moderate | Subangular/ Subrounded | 5–20 (14) | 0.1–500 (26) |
T | 4600–7200 | Alluvial Fan Delta | 8 | 5 | 87 | Sand/Gravel | Moderate/Poor | Subangular/ Subrounded | 0.9–21.8 (7.8) | 0.01–126 (1.17) | |
P | 4000–7800 | Alluvial Fan Delta | 7 | 11 | 82 | Sand/Gravel | Moderate/Poor | Subangular/ Subrounded | 2.6–15 (7.6) | 0.01–112 (0.52) | |
Ordos | T | 600–2000 | Braided River Delta | 49 | 36 | 15 | Fine Sandstone | Good/Moderate | Subangular/ Subrounded | 1.3–19.4 (11.7) | 0.01–7.64 (0.56) |
P | 2500–3800 | Braided River Delta | 74 | 2 | 24 | Medium/Coarse Sandstone | Good/Moderate | Subangular/ Subrounded | 1.7–18 (7.6) | 0.1–16.4 (0.89) | |
Sichuan | T | 3000–5500 | Delta Front | 63 | 24 | 13 | Fine/Medium Sandstone | Good | Subangular | 0.5–9.7 (4.1) | 0.002–79 (0.61) |
S | 3500–6000 | Delta Front | 87 | 6 | 7 | Coarse Siltstone | Good/Moderate | Subrounded/ Subangular | 0.3–8.67 (2.8) | 0.01–4.69 (0.28) | |
∈ | Shallow Marine Shelf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Hu, Z.; Wang, J.; Zhang, F.; Wang, X.; Hu, H.; Wang, Q.; Wang, H. The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects. Appl. Sci. 2025, 15, 6984. https://doi.org/10.3390/app15136984
Qi Y, Hu Z, Wang J, Zhang F, Wang X, Hu H, Wang Q, Wang H. The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects. Applied Sciences. 2025; 15(13):6984. https://doi.org/10.3390/app15136984
Chicago/Turabian StyleQi, Yukai, Zongquan Hu, Jingyi Wang, Fushun Zhang, Xinnan Wang, Hanwen Hu, Qichao Wang, and Hanzhou Wang. 2025. "The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects" Applied Sciences 15, no. 13: 6984. https://doi.org/10.3390/app15136984
APA StyleQi, Y., Hu, Z., Wang, J., Zhang, F., Wang, X., Hu, H., Wang, Q., & Wang, H. (2025). The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects. Applied Sciences, 15(13), 6984. https://doi.org/10.3390/app15136984