“Move” Their Brain: Motor Competence Mediates the Relationship of Physical Activity and Executive Functions in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Physical Activity
2.2.2. Motor Competence
2.2.3. Executive Functions (EFs)
2.3. Procedure
2.4. Preliminary Analyses
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pesce, C.; Ballester, R.; Benzing, V. Giving physical activity and cognition research ‘some soul’: Focus on children and adolescents. Eur. J. Hum. Mov. 2021, 47, 1–7. [Google Scholar]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sanchez-Lopez, M.; Martínez-Hortelano, J.A.; Martinez-Vizcaino, V. The effect of physical activity interventions on children’s cognition and metacognition: A systematic review and meta-analysis. J. Am. Acad. Child Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Vazou, S.; Benzing, V.; Álvarez-Bueno, C.; Anzeneder, S.; Mavilidi, M.F.; Leone, L.; Schmidt, M. Effects of chronic physical activity on cognition across the lifespan: A systematic meta-review of randomized controlled trials and realist synthesis of contextualized mechanisms. Int. Rev. Sport Exerc. Psychol. 2021, 1–39. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Stillman, C.M.; Esteban-Cornejo, I.; Brown, B.; Bender, C.M.; Erickson, K.I. Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci. 2020, 43, 533–543. [Google Scholar] [CrossRef]
- Posner, M.I. Cognition: An Introduction; Scott, Foresman: Brooklyn, NY, USA, 1973. [Google Scholar]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197. [Google Scholar] [CrossRef] [Green Version]
- Blakemore, S.J.; Choudhury, S. Development of the adolescent brain: Implications for executive function and social cognition. J. Child Psychol. Psychiatry 2006, 47, 296–312. [Google Scholar] [CrossRef]
- Nagy, Z.; Westerberg, H.; Klingberg, T. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 2004, 16, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Tang, S.; Waters, N.E.; Davis-Kean, P. Executive function and academic achievement: Longitudinal relations from early childhood to adolescence. J. Educ. Psychol. 2019, 111, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Hum. Mov. Sci. 2018, 58, 69–79. [Google Scholar] [CrossRef]
- Diamond, A. The evidence base for improving school outcomes by addressing the whole child and by addressing skills and attitudes, not just content. Early Educ. Dev. 2010, 21, 780–793. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Verburgh, L.; Königs, M.; Scherder, E.J.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; McAuley, E.; Erickson, K.I.; Liu-Ambrose, T.; Kramer, A.F. On mindful and mindless physical activity and executive function: A response to Diamond and Ling (2016). Dev. Cogn. Neurosci. 2019, 37, 100529. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; Van Den Berg, V.; Uijtdewilligen, L.; De Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Wassenaar, T.M.; Williamson, W.; Johansen-Berg, H.; Dawes, H.; Roberts, N.; Foster, C.; Sexton, C.E. A critical evaluation of systematic reviews assessing the effect of chronic physical activity on academic achievement, cognition and the brain in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 79. [Google Scholar] [CrossRef]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics 2016, 138, e2016164. [Google Scholar] [CrossRef] [Green Version]
- Lubans, D.R.; Leahy, A.A.; Mavilidi, M.F.; Valkenborghs, S.R. Physical activity, fitness, and executive functions in youth: Effects, moderators, and mechanisms. In Sensitive Periods of Brain Development and Preventive Interventions; Current Topics in Behavioral, Neurosciences; Andersen, S.L., Ed.; Springer: Cham, Switzerland, 2021; Volume 53. [Google Scholar]
- Ekkekakis, P. Pleasure and displeasure from the body: Perspectives from exercise. Cogn. Emot. 2003, 17, 213–239. [Google Scholar] [CrossRef]
- Lang, C.; Brand, S.; Feldmeth, A.K.; Holsboer-Trachsler, E.; Pühse, U.; Gerber, M. Increased self-reported and objectively assessed physical activity predict sleep quality among adolescents. Physiol. Behav. 2013, 120, 46–53. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chu, C.H.; Chen, F.T.; Hung, T.M.; Etnier, J.L. Combined effects of physical activity and obesity on cognitive function: Independent, overlapping, moderator, and mediator models. Sports Med. 2017, 47, 449–468. [Google Scholar] [CrossRef] [Green Version]
- Visier-Alfonso, M.E.; Sánchez-López, M.; Álvarez-Bueno, C.; Ruiz-Hermosa, A.; Nieto-López, M.; Martínez-Vizcaíno, V. Mediators between physical activity and academic achievement: A systematic review. Scand. J. Med. Sci. Sports 2022, 32, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.D.; Brusseau, T.A.; Bai, Y.; Byun, W. Segmented school physical activity and weight status in children: Application of compositional data analysis. Int. J. Environ. 2021, 18, 3243. [Google Scholar]
- Elmesmari, R.; Martin, A.; Reilly, J.J.; Paton, J.Y. Comparison of accelerometer measured levels of physical activity and sedentary time between obese and non-obese children and adolescents: A systematic review. BMC Pediatr. 2018, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Salway, R.; Emm-Collison, L.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. Int. J. Obes. 2020, 44, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Venetsanou, F.; Kambas, A.; Gourgoulis, V.; Yannakoulia, M. Physical activity in pre-school children: Trends over time and associations with body mass index and screen time. Ann. Hum. Biol. 2019, 46, 393–399. [Google Scholar] [CrossRef]
- Favieri, F.; Forte, G.; Casagrande, M. The executive functions in overweight and obesity: A systematic review of neuropsychological cross-sectional and longitudinal studies. Front. Psychol. 2019, 10, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamrot, P.; Hanć, T. The association of the executive functions with overweight and obesity indicators in children and adolescents: A literature review. Neurosci. Biobehav. Rev. 2019, 107, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Migueles, J.H.; Molina-Garcia, P.; Rodriguez-Ayllon, M.; Henriksson, P.; Pontifex, M.B.; Catena, A.; Ortega, F.B. Physical fitness, physical activity, and the executive function in children with overweight and obesity. J. Pediatr. 2019, 208, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef] [Green Version]
- Lemes, V.; Gaya, A.R.; Sadarangani, K.P.; Aguilar-Farias, N.; Rodriguez-Rodriguez, F.; de Lucena Martins, C.M.; Fochesatto, C.; Cristi-Montero, C. Physical fitness plays a crucial mediator role in relationships among personal, social, and lifestyle factors with adolescents’ cognitive performance in a structural equation model. Cogni-Action Project. Front. Pediatr. 2021, 9, 656916. [Google Scholar] [CrossRef]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef]
- Aadland, K.N.; Moe, V.F.; Aadland, E.; Anderssen, S.A.; Resaland, G.K.; Ommundsen, Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Act. 2017, 12, 10–18. [Google Scholar] [CrossRef]
- Albuquerque, M.R.; Rennó, G.V.C.; Bruzi, A.T.; Fortes, L.D.S.; Malloy-Diniz, L.F. Association between motor competence and executive functions in children. Appl. Neuropsychol. Child 2022, 11, 495–503. [Google Scholar] [CrossRef]
- Gandotra, A.; Csaba, S.; Sattar, Y.; Cserényi, V.; Bizonics, R.; Cserjesi, R.; Kotyuk, E. A meta-analysis of the relationship between motor skills and executive functions in typically-developing children. J. Cogn. Dev. 2022, 23, 83–110. [Google Scholar] [CrossRef]
- Geertsen, S.S.; Thomas, R.; Larsen, M.N.; Dahn, I.M.; Andersen, J.N.; Krause-Jensen, M.; Korup, V.; Nielsen, C.M.; Wienecke, J.; Ritz, C.; et al. Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS ONE 2016, 11, e0161960. [Google Scholar]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef]
- Ludyga, S.; Mücke, M.; Kamijo, K.; Andrä, C.; Pühse, U.; Gerber, M.; Herrmann, C. The role of motor competences in predicting working memory maintenance and preparatory processing. Child Dev. 2020, 91, 799–813. [Google Scholar] [CrossRef]
- Cook, C.J.; Howard, S.J.; Scerif, G.; Twine, R.; Kahn, K.; Norris, S.A.; Draper, C.E. Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. Dev. Sci. 2019, 22, e12820. [Google Scholar] [CrossRef]
- Pesce, C.; Masci, I.; Marchetti, R.; Vazou, S.; Sääkslahti, A.; Tomporowski, P.D. Deliberate play and preparation jointly benefit motor and cognitive development: Mediated and moderated effects. Front. Psychol. 2016, 7, 349. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, M.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Ruiz-Hermosa, A.; Pozuelo-Carrascosa, D.P.; Díez-Fernández, A.; Del Campo, D.G.-D.; Pardo-Guijarro, M.J.; Martínez-Vizcaíno, V. Impact of a multicomponent physical activity intervention on cognitive performance: The MOVI-KIDS study. Scand. J. Med. Sci. Sports 2019, 29, 766–775. [Google Scholar] [CrossRef]
- Podnar, H.; Jurić, P.; Karuc, J.; Saez, M.; Barceló, M.A.; Radman, I.; Starc, G.; Jurak, G.; Đurić, S.; Potočnik, Ž.L.; et al. Comparative effectiveness of school-based interventions targeting physical activity, physical fitness or sedentary behaviour on obesity prevention in 6-to 12-year-old children: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13160. [Google Scholar] [CrossRef]
- Rauner, A.; Mess, F.; Woll, A. The relationship between physical activity, physical fitness and overweight in adolescents: A systematic review of studies published in or after 2000. BMC Pediatr. 2013, 13, 19. [Google Scholar] [CrossRef] [Green Version]
- Cadenas-Sanchez, C.; Migueles, J.H.; Esteban-Cornejo, I.; Mora-Gonzalez, J.; Henriksson, P.; Rodriguez-Ayllon, M.; Molina-García, P.; Löf, M.; Labayen, I.; Hillman, C.H.; et al. Fitness, physical activity and academic achievement in overweight/obese children. J. Sports Sci. 2020, 38, 731–740. [Google Scholar] [CrossRef]
- Barnett, L.M.; Webster, E.K.; Hulteen, R.M.; De Meester, A.; Valentini, N.C.; Lenoir, M.; Pesce, C.; Getchell, N.; Lopes, V.P.; Robinson, L.E.; et al. Through the looking glass: A systematic review of longitudinal evidence, providing new insight for motor competence and health. Sports Med. 2022, 52, 875–920. [Google Scholar] [CrossRef]
- Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.J. Practical guide to measuring physical activity. J. Acad. Nutr. Diet. 2014, 114, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Westerterp, K.R. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009, 105, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.; Schofield, G.M.; Kolt, G.S.; Schluter, P.J. Pedometer accuracy in physical activity assessment of preschool children. J. Sci. Med. Sport 2007, 10, 303–310. [Google Scholar] [CrossRef]
- Duncan, A.; White, K.; Saulilo, L.; Schofield, G. Convergent validity of a piezoelectric pedometer and an omnidirectional accelerometer for measuring children’s physical activity. Pediatr. Exerc. Sci. 2011, 23, 399–410. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A.; Giannakidou, D.M.; Avloniti, A.; Draganidis, D.; Chatzinikolaou, A.; Fatouros, I.G.; Michalopoulou, M. The validity of two Omron pedometers in preschool children under different conditions. Sylwan 2015, 159, 60–89. [Google Scholar]
- Healthy Active Living and Obesity Research Group (HALO). Canadian Assessment of Physical Literacy, Manual for Test Administration, 2nd ed.; Active Healthy Kids Global Alliance: Ottawa, ON, Canada, 2017; Available online: https://www.capl-eclp.ca/wp-content/uploads/2017/10/capl-2-manual-en.pdf (accessed on 1 September 2022).
- Bruininks, R.; Bruininks, B. Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed.; NCS Pearson: Minneapolis, MN, USA, 2005. [Google Scholar]
- Lucas, B.R.; Latimer, J.; Doney, R.; Ferreira, M.L.; Adams, R.; Hawkes, G.; Fitzpatrick, J.P.; Hand, M.; Oscar, J.; Carter, M.; et al. The Bruininks-Oseretsky test of motor proficiency-short form is reliable in children living in remote Australian aboriginal communities. BMC Pediatr. 2013, 13, 135. [Google Scholar] [CrossRef] [Green Version]
- Venetsanou, F.; Voukias, K.; Zavolas, G.; Mitsios, O.; Kambas, A. Aspects of validity and reliability of the Bruininks-Oseretsky Test of Motor Proficiency-Short Form (BOT-SF) in Greek children. In Crossing Borders through Sport Science, Proceedings of the 21st Annual Congress of the ECSS, Vienna, Austria, 6–9 July 2016; Baca, A., Ed.; University of Vienna: Vienna, Austria, 2016; p. 427. [Google Scholar]
- Cepeda, N.J.; Cepeda, M.L.; Kramer, A.F. Task switching and attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2000, 28, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Ralli, A.M.; Chrysochoou, E.; Roussos, P.; Diakogiorgi, K.; Dimitropoulou, P.; Filippatou, D. Executive function, working memory, and verbal fluency in relation to non-verbal intelligence in Greek-speaking school-age children with developmental language disorder. Brain Sci. 2021, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, N.J.; Kramer, A.F.; Gonzalez de Sather, J. Changes in executive control across the life span: Examination of task-switching performance. Dev. Psychol. 2001, 37, 715. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.; Gathercole, S.E. Working Memory Test Battery for Children (WMTB-C); Psychological Corporation: London, UK, 2001. [Google Scholar]
- Müller, U.; Kerns, K.A.; Konkin, K. Test–retest reliability and practice effects of executive function tasks in preschool children. TCN 2012, 26, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Wells, E.L.; Kofler, M.J.; Soto, E.F.; Schaefer, H.S.; Sarver, D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disab. 2018, 72, 166–178. [Google Scholar] [CrossRef]
- Chrysochoou, E. Working Memory Contributions to Children’s Listening Comprehension in Early and Middle Childhood Years. Ph.D. Thesis, Department of Early Childhood Education, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2006. [Google Scholar]
- Chrysochoou, E.; Bablekou, Z.; Masoura, E.; Tsigilis, N. Working memory and vocabulary development in Greek preschool and primary school children. Eur. J. Dev. Psychol. 2013, 10, 417–432. [Google Scholar] [CrossRef]
- Kazi, S.; Kazali, E.; Makris, N.; Spanoudis, G.; Demetriou, A. Cognizance in cognitive development: A longitudinal study. Cogn. Dev. 2019, 52, 100805. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Steiger, J.H. Understanding the limitations of global fit assessment in structural equation modeling. Pers. Individ. Differ. 2007, 42, 893–898. [Google Scholar] [CrossRef]
- Damiris, A.P.; Selemidi, E.; Venetsanou, F.; Kaioglou, V. Physical literacy of children participating in different sports. Rev. Psicol. Deporte 2021, 30, 17–23. [Google Scholar]
- Lubans, D.R.; Smith, J.J.; Eather, N.; Leahy, A.A.; Morgan, P.J.; Lonsdale, C.; Plotnikoff, R.C.; Nilsson, M.; Kennedy, S.G.; Holliday, E.G.; et al. Time-efficient intervention to improve older adolescents’ cardiorespiratory fitness: Findings from the ‘Burn 2 Learn’ cluster randomised controlled trial. Br. J. Sports Med. 2021, 55, 751–758. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Fung, D.; Tsai, H.; Chang, Y.K.; Huang, C.J.; Hung, T.M. Differences in working memory as a function of physical activity in children. Neuropsychology 2018, 32, 797. [Google Scholar] [CrossRef]
- López-Vicente, M.; Garcia-Aymerich, J.; Torrent-Pallicer, J.; Forns, J.; Ibarluzea, J.; Lertxundi, N.; González, L.; Valera-Gran, D.; Torrent, M.; Dadvand, P.; et al. Are early physical activity and sedentary behaviors related to working memory at 7 and 14 years of age? J. Pediatr. 2017, 188, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Mala, J.; McGarry, J.; Riley, K.E.; Lee, E.C.H.; DiStefano, L. The relationship between physical activity and executive functions among youth in low-income urban schools in the northeast and southwest United States. J. Sport Exerc. Psychol. 2020, 42, 292–306. [Google Scholar] [CrossRef]
- Vandenbroucke, L.; Seghers, J.; Verschueren, K.; Wijtzes, A.I.; Baeyens, D. Longitudinal associations between objectively measured physical activity and development of executive functioning across the transition to first grade. J. Phys. Act. Health 2016, 13, 895–902. [Google Scholar] [CrossRef]
- Pindus, D.M.; Drollette, E.S.; Scudder, M.R.; Khan, N.A.; Raine, L.B.; Sherar, L.B.; Esliger, D.W.; Kramer, A.F.; Hillman, C.H. Moderate-to-vigorous physical activity, indices of cognitive control, and academic achievement in preadolescents. J. Pediatr. 2016, 173, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpää, A.; Kantomaa, M.T. The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children. PLoS ONE 2014, 9, e103559. [Google Scholar] [CrossRef] [Green Version]
- Van der Niet, A.G.; Smith, J.; Scherder, E.J.; Oosterlaan, J.; Hartman, E.; Visscher, C. Associations between daily physical activity and executive functioning in primary school-aged children. J. Sci. Med. Sport 2015, 18, 673–677. [Google Scholar] [CrossRef]
- Spanou, M.; Stavrou, N.; Dania, A.; Venetsanou, F. Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions. Int. J. Environ. Res. Public Health 2022, 19, 5646. [Google Scholar] [CrossRef]
- Russo, G.; Ottoboni, G.; Tessari, A.; Ceciliani, A. The positive impact of physical activity on working memory abilities: Evidence from a large Italian pre-adolescent sample. J. Hum. Sport Exerc. 2021, 16, 277–288. [Google Scholar]
- Möhring, W.; Klupp, S.; Ludyga, S.; Grob, A. Executive functions in children engaging in open-and closed-skilled sports. Psychol. Sport Exerc. 2022, 61, 102218. [Google Scholar] [CrossRef]
- Ludyga, S.; Pühse, U.; Gerber, M.; Herrmann, C. Core executive functions are selectively related to different facets of motor competence in preadolescent children. Eur. J. Sport Sci. 2019, 19, 375–383. [Google Scholar] [CrossRef]
- Ludyga, S.; Herrmann, C.; Mücke, M.; Andrä, C.; Brand, S.; Pühse, U.; Gerber, M. Contingent negative variation and working memory maintenance in adolescents with low and high motor competencies. Neural Plast. 2018, 2018, 9628787. [Google Scholar] [CrossRef] [Green Version]
- Meijer, A.; Pouwels, P.J.; Smith, J.; Visscher, C.; Bosker, R.J.; Hartman, E.; Oosterlaan, J.; Königs, M. The relationship between white matter microstructure, cardiovascular fitness, gross motor skills, and neurocognitive functioning in children. J. Neurosci. Res. 2021, 99, 2201–2215. [Google Scholar] [CrossRef]
- Koziol, L.F.; Lutz, J.T. From movement to thought: The development of executive function. Appl. Neuropsychol. Child 2013, 2, 104–115. [Google Scholar] [CrossRef]
- Ardoy, D.N.; Fernández-Rodríguez, J.M.; Jiménez-Pavón, D.; Castillo, R.; Ruiz, J.R.; Ortega, F.B. A physical education trial improves adolescents’ cognitive performance and academic achievement: The EDUFIT study. Scand. J. Med. Sci. Sports 2014, 24, e52–e61. [Google Scholar] [CrossRef]
- Niederer, I.; Kriemler, S.; Gut, J.; Hartmann, T.; Schindler, C.; Barral, J.; Puder, J.J. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study. BMC Pediatr. 2011, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Planinsec, J.; Pisot, R. Motor coordination and intelligence level in adolescents. Adolescence 2006, 41, 667–676. [Google Scholar]
- Budde, H.; Voelcker-Rehage, C.; Pietraßyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 2008, 441, 219–223. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L.; Hillman, C.H.; Cohen, N.J.; Kramer, A.F., III. The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monogr. Soc. Res. Child Dev. 2014, 79, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E. Cardiorespiratory fitness and motor skills in relation to cognition and academic performance in children—A review. J. Hum. Kinet. 2013, 36, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, J.T. Fundamentals of Motor Behavior; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Tomporowski, P.D.; Pesce, C. Exercise, sports, and performance arts benefit cognition via a common process. Psychol. Bull. 2019, 145, 929–951. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, B.F.; Oosterlaan, J.; Königs, M.; Hartman, E. Physical fitness, cognitive functioning and academic achievement in healthy adolescents. Psychol. Sport Exerc. 2021, 57, 102060. [Google Scholar] [CrossRef]
- Latorre-Román, P.A.; Berrios-Aguayo, B.; Aragón-Vela, J.; Pantoja-Vallejo, A. Effects of a 10-week active recess program in school setting on physical fitness, school aptitudes, creativity and cognitive flexibility in elementary school children. A randomised-controlled trial. J. Sports Sci. 2021, 39, 1277–1286. [Google Scholar] [CrossRef]
- Mazzoccante, R.P.; de Luca Corrêa, H.; de Sousa, I.R.C.; Camarâ, M.A.; de Sousa Alves, G.; de Sousa, B.R.C.; de Santana, F.S.; Ferreira, A.P.; de Melo, G.F. The influence of sports practice in children aged 6 to 7 years on physical fitness, motor coordination and executive functions. J. Sport Psychol. 2020, 29, 175–184. [Google Scholar]
- McNeill, J.; Howard, S.J.; Vella, S.A.; Cliff, D.P. Longitudinal associations of physical activity and modified organized sport participation with executive function and psychosocial health in preschoolers. J. Sports Sci. 2020, 38, 2858–2865. [Google Scholar] [CrossRef]
- Kaioglou, V.; Dania, A.; Venetsanou, F. How physically literate are children today? A baseline assessment of Greek children 8–12 years of age. J. Sports Sci. 2020, 38, 741–750. [Google Scholar] [CrossRef]
- Cairney, J.; Bedard, C.; Dudley, D.; Kriellaars, D. Towards a physical literacy framework to guide the design, implementation and evaluation of early childhood movement-based interventions targeting cognitive development. Ann. Sports Med. Res. 2016, 3, 1073. [Google Scholar]
- Pesce, C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Pesce, C.; Benzing, V.; Schmidt, M.; Paas, F.; Okely, A.D.; Vazou, S. Meta-analysis of movement-based interventions to aid academic and behavioral outcomes: A taxonomy of relevance and integration. Educ. Res. Rev. 2022, 37, 100478. [Google Scholar] [CrossRef]
- Pesce, C.; Lakes, K.D.; Stodden, D.F.; Marchetti, R. Fostering self-control development with a designed intervention in physical education: A two-year class-randomized trial. Child Dev. 2021, 92, 937–958. [Google Scholar] [CrossRef]
- Vazou, S.; Pesce, C.; Lakes, K.; Smiley-Oyen, A. More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. 2019, 17, 153–178. [Google Scholar] [CrossRef]
- Muntaner-Mas, A.; Mazzoli, E.; Abbott, G.; Mavilidi, M.F.; Galmes-Panades, A.M. Do physical fitness and executive function mediate the relationship between physical activity and academic achievement? An examination using structural equation modelling. Children 2022, 9, 823. [Google Scholar] [CrossRef]
PA | MC | BMI | SwitchAcc | SwitchRT | NSwitchAcc | NSwitchRT | Switchcosts | WMcorrect | |
---|---|---|---|---|---|---|---|---|---|
PA | 1000 | ||||||||
MC | 0.211 * | 1.000 | |||||||
BMI | 0.000 | −0.068 | 1.000 | ||||||
SwitchAcc | −0.095 | 0.324 ** | −0.044 | 1.000 | |||||
SwitchRT | −0.098 | −0.270 * | 0.062 | 0.410 ** | 1.000 | ||||
NSwitchAcc | −0.053 | 0.381 ** | −0.034 | 0.763 ** | 0.328 ** | 1.000 | |||
NSwitchRT | −0.071 | −0.208 * | 0.045 | 0.257 * | 0.802 ** | 0.206 * | 1.000 | ||
Switch costs | −0.039 | −0.087 | 0.024 | 0.227 * | 0.273 ** | 0.084 | 0.356 ** | 1.000 | |
WMcorrect | −0.125 | 0.347 ** | −0.067 | 0.160 | −0.201 | 0.257 * | −0.278 ** | 0.133 | 1.000 |
Variables | M ± SD |
---|---|
PA | 12,461 ± 3449 |
MC | 73.0 ± 4.7 |
BMI | 18.3 ± 3.1 |
EFs | |
WMcorrect | 14.29 ± 4.065 |
SwitchAcc | 0.858333 ± 0.1044384 |
SwitchRT | 2042.828508 ± 610.5183967 |
NSwitchAcc | 0.875926 ± 0.0893287 |
NSwitchRT | 1976.520956 ± 628.4286279 |
Switch costs | 66.307552 ± 390.6293040 |
Direct Effect | Confidence Intervals (95%) | p | Indirect Effect | Confidence Intervals (95%) | p | ||
---|---|---|---|---|---|---|---|
PA→MC | 0.095 | 0.060, 0.374 | 0.016 | ||||
MC→WMcorrect | 0.093 | 0.188, 0.501 | 0.011 | PA→MC→WMcorrect | 0.033 | 0.023, 0.141 | 0.010 |
MC→SwitchAcc | 0.144 | 0.047, 0.552 | 0.032 | PA→MC→SwitchAcc | 0.040 | 0.017, 0.168 | 0.014 |
MC→SwitchRT | 0.111 | −0.475, −0.092 | 0.019 | PA→MC→SwitchRT | 0.036 | −0.131, −0.011 | 0.022 |
MC→NSwitchAcc | 0.137 | 0.112, 0.575 | 0.035 | PA→MC→NswitchAcc | 0.042 | 0.023, 0.173 | 0.020 |
MC→NSwitchRT | 0.108 | −0.401, −0.040 | 0.069 | PA→MC→NswitchRT | 0.032 | −0.125, −0.008 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanou, M.; Kaioglou, V.; Pesce, C.; Mavilidi, M.F.; Venetsanou, F. “Move” Their Brain: Motor Competence Mediates the Relationship of Physical Activity and Executive Functions in Children. Appl. Sci. 2022, 12, 10527. https://doi.org/10.3390/app122010527
Spanou M, Kaioglou V, Pesce C, Mavilidi MF, Venetsanou F. “Move” Their Brain: Motor Competence Mediates the Relationship of Physical Activity and Executive Functions in Children. Applied Sciences. 2022; 12(20):10527. https://doi.org/10.3390/app122010527
Chicago/Turabian StyleSpanou, Martha, Vasiliki Kaioglou, Caterina Pesce, Myrto F. Mavilidi, and Fotini Venetsanou. 2022. "“Move” Their Brain: Motor Competence Mediates the Relationship of Physical Activity and Executive Functions in Children" Applied Sciences 12, no. 20: 10527. https://doi.org/10.3390/app122010527