Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Data
2.2. Time Series Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sabbarese, C.; Ambrosino, F.; Chiodini, G.; Giudicepietro, F.; Macedonio, G.; Caliro, S.; De Cesare, W.; Bianco, F.; Pugliese, M.; Roca, V. Continuous radon monitoring during seven years of volcanic unrest at Campi Flegrei caldera (Italy). Sci. Rep. 2020, 10, 9551. [Google Scholar] [CrossRef]
- Ambrosino, F.; Sabbarese, C.; Buompane, R.; Roca, V. Development and calibration of a method for direct measurement of 220Rn (thoron) activity concentration. Appl. Radiat. Isot. 2020, 166, 109310. [Google Scholar] [CrossRef]
- Oh, Y.H.; Kim, G. A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 2015, 5, 13084. [Google Scholar] [CrossRef] [Green Version]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A. Development of radon transport model in different types of dwellings to assess indoor activity concentration. J. Environ. Radioact. 2021, 227, 106501. [Google Scholar] [CrossRef]
- Siročić, A.P.; Stanko, D.; Sakač, N.; Dogančić, D.; Trojko, T. Short-term measurement of indoor radon concentration in Northern Croatia. Appl. Sci. 2020, 10, 2341. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F.; Sabbarese, C.; Roca, V.; Giudicepietro, F.; De Cesare, W. Connection between 222Rn emission and geophysical-geochemical parameters recorded during the volcanic unrest at Campi Flegrei. Appl. Radiat. Isot. 2020, 166, 109385. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.V.; Kumara, K.S.; Karunakara, N. Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. Radiat. Meas. 2020, 130, 106220. [Google Scholar] [CrossRef]
- Iskandar, D.; Yamazawa, H.; Iida, T. Quantification of the dependency of radon emanation power on soil temperature. Appl. Radiat. Isot. 2004, 60, 971–973. [Google Scholar] [CrossRef]
- Garavaglia, M.; Dal Moro, G.; Zadro, M. Radon and tilt measurements in a seismic area: Temperature effects. Phys. Chem. Earth Part A 2000, 25, 233–237. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Sengupta, R. Anomalous radon emission as precursor of earthquake. J. Appl. Geophy. 2009, 69, 67–81. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Šebela, S.; Sabbarese, C. Detecting time series anomalies using hybrid methods applied to Radon signals recorded in caves for possible correlation with earthquakes. Acta Geod. Geophys. 2020, 55, 405–420. [Google Scholar] [CrossRef]
- Cigolini, C.; Laiolo, M.; Coppola, D.; Ulivieri, G. Preliminary radon measurements at Villarrica volcano, Chile. J. S. Am. Earth Sci. 2013, 46, 1–8. [Google Scholar] [CrossRef]
- Bochao, X.; Dong, X.; Burnett, W.C.; Dimova, N.T.; Houjie, W.; Longjun, Z.; Maosheng, G.; Xueyan, J.; Zhigang, Y. Natural 222Rn and 220Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China. Appl. Geochem. 2014, 51, 79–85. [Google Scholar]
- Hu, J.; Yang, G.; Hegedűs, M.; Iwaoka, K.; Hosoda, M.; Tokonami, S. Numerical modeling of the sources and behaviors of 222Rn, 220Rn and their progenies in the indoor environment—A review. J. Environ. Radioact. 2018, 189, 40–47. [Google Scholar] [CrossRef]
- Ramola, R.C.; Prasad, M.; Kandari, T.; Pant, P.; Bossew, P.; Mishra, R.; Tokonami, S. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci. Rep. 2016, 6, 31061. [Google Scholar] [CrossRef]
- Sabot, B.; Pierre, S.; Cassette, P.; Michielsen, N.; Bondiguel, S. Development of a primary thoron activity standard calibration of thoron measurement instruments. Radiat. Prot. Dosim. 2015, 167, 70–74. [Google Scholar] [CrossRef]
- Jaishi, H.P.; Singh, S.; Tiwari, R.P.; Tiwari, R.C. Soil-gas thoron concentration associated with seismic activity. Chiang Mai J. Sci. 2015, 42, 972–979. [Google Scholar]
- Ambrosino, F.; Sabbarese, C.; Roca, V.; Giudicepietro, F.; Chiodini, G. Analysis of 7-years radon time series at Campi Flegrei area (Naples, Italy) using artificial neural network method. Appl. Radiat. Isot. 2020, 163, 109239. [Google Scholar] [CrossRef] [PubMed]
- Tamburrello, G.; Caliro, S.; Chiodini, G.; De Martino, P.; Avino, R.; Minopoli, C.; Carandente, A.; Rouwet, D.; Aiuppa, A.; Costa, A.; et al. Escalating CO2 degassing at the pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J. Volcanol. Geotherm. Res. 2019, 384, 151–157. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.; Avino, R.; Baldini, A.; Donnini, M.; Minopoli, C. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 2010, 115, B03205. [Google Scholar] [CrossRef] [Green Version]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Trasatti, E.; Polcari, M.; Bonafede, M.; Stramondo, S. Geodetic contraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geoph. Res. Lett. 2015, 42, 3847–3854. [Google Scholar] [CrossRef]
- Cardellini, C.; Chiodini, G.; Frondini, F.; Avino, R.; Bagnato, E.; Caliro, S.; Lelli, M.; Rosiello, A. Monitoring diffuse volcanic degassing during volcanic unrests: The case of Campi Flegrei (Italy). Sci. Rep. 2017, 7, 6757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Sabbarese, C. Anomalies identification of Earth’s rotation rate time series (2012–2017) for possible correlation with strong earthquakes occurrence. Geod. Geodyn. 2019, 10, 455–459. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.; Yang, W.; Niu, T. Multi-step ahead forecasting in electrical power system using a hybrid forecasting system. Renew. Energy 2018, 122, 533–550. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinová, L.; Hýža, M.; Sabbarese, C. 214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague. Nukleonika 2020, 65, 115–119. [Google Scholar] [CrossRef]
- Ambrosino, F.; De Cesare, W.; Roca, V.; Sabbarese, C. Mathematical and geophysical methods for searching anomalies of the radon signal related to earthquakes. J. Phys. Conf. Ser. 2019, 1226, 012025. [Google Scholar] [CrossRef]
- Ambrosino, F.; Stellato, L.; Sabbarese, C. A case study on possible radiological contamination in the Lo Uttaro landfill site (Caserta, Italy). J. Phys. Conf. Ser. 2020, 1548, 012001. [Google Scholar] [CrossRef]
- Ambrosino, F.; Buompane, R.; Pugliese, M.; Roca, V.; Sabbarese, C. RaMonA system for radon and thoron measurement. Nuovo Cimento C 2018, 41, 222. [Google Scholar]
- Sabbarese, C.; Ambrosino, F.; Buompane, R.; Pugliese, M.; Roca, V. Analysis of alpha particles spectra of the radon and thoron progenies generated by an electrostatic collection detector using new software. Appl. Radiat. Isot. 2017, 122, 180–185. [Google Scholar] [CrossRef]
- Endo, E.T.; Murray, T. Real-time seismic amplitude measurement (RSAM): A volcano monitoring and prediction tool. Bull. Volcanol. 1991, 53, 533–545. [Google Scholar] [CrossRef]
- Chiodini, G.; Selva, J.; Del Pezzo, E.; Marsan, D.; De Siena, L.; D’Auria, L.; Bianco, F.; Caliro, S.; De Martino, P.; Ricciolino, P.; et al. Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy). Sci. Rep. 2017, 7, 4472. [Google Scholar] [CrossRef] [PubMed]
- Giudicepietro, F.; Chiodini, G.; Caliro, S.; De Cesare, W.; Esposito, A.M.; Galluzzo, D.; Lo Bascio, D.; Macedonio, G.; Orazi, M.; Ricciolino, P.; et al. Insight into Campi Flegrei caldera unrest through seismic tremor measurements at Pisciarelli fumarolic field. Geochem. Geophys. Geosystems 2019, 20, 5544–5555. [Google Scholar] [CrossRef]
- Caliro, S.; Chiodini, G.; Moretti, R.; Avino, R.; Granieria, D.; Russo, M.; Fiebig, J. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 2007, 71, 3040–3055. [Google Scholar] [CrossRef]
- Chiodini, G.; Giudicepietro, F.; Vandemeulebrouck, J.; Aiuppa, A.; Caliro, S.; De Cesare, W.; Tamburello, G.; Avino, R.; Orazi, M.; D’Auria, L. Fumarolic tremor and geochemical signals during a volcanic unrest. Geology 2017, 45, 1131–1134. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Du, P.; Li, Y. Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system. Energy J. 2018, 148, 59–78. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; De Cicco, F.; Pugliese, M.; Quarto, M.; Roca, V. Signal decomposition and analysis for the identification of periodic and anomalous phenomena in Radon time-series. Radiat. Prot. Dosim. 2017, 177, 202–206. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Giudicepietro, F.; Roca, V.; Sabbarese, C. Analysis of geophysical and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic) and in soils of Phlegrean Fields caldera (Italy). Appl. Radiat. Isot. 2020, 160, 109140. [Google Scholar] [CrossRef]
- Hong, L. Decomposition and forecast for financial time series with high-frequency based on Empirical Mode Decomposition. Energy Procedia 2011, 5, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Oh, H.S. Empirical mode decomposition with missing values. Springerplus 2016, 5, 2016. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.Y.; Han, Y.; Huang, L.M.; Zhao, B.B.; Wang, M.H. A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng. 2016, 124, 54–73. [Google Scholar] [CrossRef]
- Sousa, J.C.; Jorge, H.M.; Neves, L.P. Short-term load forecasting based on support vector regression and load profiling. Int. J. Energy Res. 2014, 38, 350–362. [Google Scholar] [CrossRef]
- Baldacci, L.; Golfarelli, M.; Lombardi, D.; Sami, F. Natural gas consumption forecasting for anomaly detection. Expert Syst. Appl. 2016, 62, 190–201. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Sabbarese, C. Analysis of radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat. Prot. Dosim. 2019, 186, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.; Chen, W.; Ho, C. Anomalous decrease in groundwater radon before 2016 Mw 6.4 Meinong earthquake and its application in Taiwan. Appl. Radiat. Isot. 2018, 136, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, T.; Bianconcini, S.; Dagum, E.B.; Maass, P.; McElroy, T.S. A review of some modern approaches to the problem of trend extraction. Econom. Rev. 2012, 31, 593–624. [Google Scholar] [CrossRef]
- Ambrosino, F.; Pugliese, M.; Roca, V.; Sabbarese, C. Innovative methodologies for the analysis of radon time series. Nuovo Cimento C 2018, 41, 223. [Google Scholar]
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun. 2016, 7, 13712l. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccorso, A.; Currenti, G.; Del Negro, C.; Boschi, E. Dike deflection modelling for inferring magma pressure and withdrawal, with application to Etna 2001 case. Earth Planet. Sci. Lett. 2010, 293, 121–129. [Google Scholar] [CrossRef]
- Chiodini, G.; Marini, L. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 1998, 62, 2673–2687l. [Google Scholar] [CrossRef]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Giammanco, S.; Sims, K.W.W.; Neri, M. Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochem. Geophys. Geosyst. 2007, 8, Q10001. [Google Scholar] [CrossRef] [Green Version]
- Voltattorni, N.; Lombardi, S.; Rizzo, S. 222Rn and CO2 soil-gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy). Appl. Geochem. 2010, 25, 1248–1256. [Google Scholar] [CrossRef]
- Rodrigo-Naharro, J.; Quindós, L.S.; Clemente-Jul, C.; Mohamud, A.H.; del Villara, L.P. CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: Implications on 222Rn mobility. Appl. Geochem. 2017, 84, 297–305. [Google Scholar] [CrossRef]
- Mollo, S.; Tuccimei, P.; Galli, G.; Iezzi, G.; Scarlato, P. The imprint of thermally induced devolatilization phenomena on radon signal: Implications for the geochemical survey in volcanic areas. Geophys. J. Int. 2017, 211, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Domingos, F.; Pereira, A. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Sci. Total Environ. 2018, 622–623, 825–840. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the Campania region (Southern Italy). Appl. Geochem. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Aiuppa, A.; Tamburello, G.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Giudice, G.; Grassa, F.; Pedone, M. First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005–2013) at Campi Flegrei: Fumarolic gas output from Campi Flegrei. Geochem. Geophys. Geosyst. 2013, 14, 4153–4169. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr. Build. Mater. 2021, 268, 121087. [Google Scholar] [CrossRef]
- Cigolini, C.; Salierno, F.; Gervino, G.; Bergese, P.; Marino, C.; Russo, M.; Prati, P.; Ariola, V.; Bonetti, R.; Begnini, S. High-resolution radon monitoring and hydrodynamics at Mount Vesuvius. Geophys. Res. Lett. 2001, 20, 4035–4038. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Parello, F. Soil gas prospection of He, 222Rn and CO2: Vulcano Porto area, Aeolian Islands, Italy. Appl. Geochem. 1997, 12, 213–224. [Google Scholar] [CrossRef]
- Yang, T.F.; Walia, V.; Chyi, L.L.; Fu, C.C.; Chen, C.H.; Liu, T.K.; Song, S.R.; Lee, C.Y.; Lee, M. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat. Meas. 2005, 40, 496–502. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosino, F.; Sabbarese, C.; Giudicepietro, F.; De Cesare, W.; Pugliese, M.; Roca, V. Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017. Appl. Sci. 2021, 11, 5809. https://doi.org/10.3390/app11135809
Ambrosino F, Sabbarese C, Giudicepietro F, De Cesare W, Pugliese M, Roca V. Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017. Applied Sciences. 2021; 11(13):5809. https://doi.org/10.3390/app11135809
Chicago/Turabian StyleAmbrosino, Fabrizio, Carlo Sabbarese, Flora Giudicepietro, Walter De Cesare, Mariagabriella Pugliese, and Vincenzo Roca. 2021. "Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017" Applied Sciences 11, no. 13: 5809. https://doi.org/10.3390/app11135809
APA StyleAmbrosino, F., Sabbarese, C., Giudicepietro, F., De Cesare, W., Pugliese, M., & Roca, V. (2021). Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017. Applied Sciences, 11(13), 5809. https://doi.org/10.3390/app11135809