Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Water–Tea Leaves Weight Ratio
2.2.2. Infusion Temperature
2.2.3. Storage Time and Temperature
2.3. Determination of Total Phenolic Content
2.4. High Performance Liquid Chromatography (HPLC) Analysis
2.5. Determination of DPPH Scavenging Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. HPLC
3.2. Effect of the Water–Tea Leaves Weight Ratio
3.3. Effect of Infusion Temperature
3.4. Effect of Storage Time and Storage Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, C.S.; Wang, H.; Sheridan, Z.P. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J. Food Drug Anal. 2017, 26, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, D.L.; Blumberg, J.B. Review-The role of tea in human health: an update. J. Am. Coll. Nutr. 2002, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, H.; Ahmad, N. Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 2000, 71, 1698–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Lo, C.Y.; Pan, M.H.; Lai, C.S.; Ho, C.T. Black tea: chemical analysis and stability. Food Funct. 2012, 4, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.H.; Lai, C.S.; Wang, H.; Lo, C.Y.; Ho, C.T.; Li, S. Black tea in chemo-prevention of cancer and other human diseases. Food Sci. Hum. Wellness 2013, 2, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Magnusdottir, S.G.M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Pastoriza, S.; Pérez-Burillo, S.; Rufián-Henares, J.Á. How brewing parameters affect the healthy profile of tea. Curr. Opin. Food Sci. 2017, 14, 7–12. [Google Scholar] [CrossRef]
- Venditti, E.; Bacchetti, T.; Tiano, L.; Carloni, P.; Greci, L.; Damiani, E. Hot vs. cold water steeping of different teas: Do they affect antioxidant activity? Food Chem. 2010, 119, 1597–1604. [Google Scholar] [CrossRef]
- Hajiaghaalipour, F.; Sanusi, J.; Kanthimathi, M.S. Temperature and time of steeping affect the antioxidant properties of white, green, and black tea infusions. J. Food Sci. 2016, 81, 246–254. [Google Scholar] [CrossRef]
- Yuann, J.M.P.; Wu, J.Y.; Chang, H.H.; Liang, J.Y. Effects of temperature and water steeping duration on antioxidant activity and caffeine content of tea. MC Trans. Biotechnol. 2015, 7, 22–32. [Google Scholar]
- Bazinet, L.; Araya-Farias, M.; Doyen, A.; Trudel, D.; Têtu, B. Effect of process unit operations and long-term storage on catechin contents in EGCG-enriched tea drink. Food Res. Int. 2010, 43, 1692–1701. [Google Scholar] [CrossRef]
- Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- Labbé, D.; Têtu, B.; Trudel, D.; Bazinet, L. Catechin stability of EGC- and EGCG-enriched tea drinks produced by a two-step extraction procedure. Food Chem. 2008, 111, 139–143. [Google Scholar] [CrossRef]
- Kim, Y.; Welt, B.A.; Talcott, S.T. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage. J. Agric. Food Chem. 2011, 59, 4676–4683. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef]
- Huang, W.Y.; Lee, P.C.; Hsu, J.C.; Lin, Y.R.; Chen, H.J.; Lin, Y.S. Effects of water quality on dissolution of yerba mate extract powders. Sci. World J. 2014, 2014, 768742. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.F.; Wu, C.T.; Huang, W.Y.; Lin, W.S.; Wu, H.W.; Huang, T.K.; Chang, M.Y.; Lin, Y.S. Antioxidation and melanogenesis inhibition of various Dendrobium tosaense extracts. Molecules 2018, 23, 1810. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Y.; Lin, Y.R.; Ho, R.F.; Liu, H.Y.; Lin, Y.S. Effects of water solutions on extracting green tea leaves. Sci. World J. 2013, 2013, 368350. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.C.; Chan, C.F.; Huang, W.Y.; Lin, J.S.; Chan, P.; Liu, H.Y.; Lin, Y.S. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules 2013, 18, 14161–14171. [Google Scholar] [CrossRef]
- Ramalho, S.A.; Nigam, N.; Oliveira, G.B.; de Oliveira, P.A.; Silva, T.O.M.; dos Santos, A.G.P.; Narain, N. Effect of infusion time on phenolic compounds and caffeine content in black tea. Food Res. Int. 2013, 51, 155–161. [Google Scholar] [CrossRef]
- Veljkovic, N.J.; Pavlovic, N.A.; Mitic, S.S.; Tosic, B.S.; Stojanovic, S.G.; Kalicanin, M.B.; Stankovic, M.D.; Stojkovic, B.M.; Mitic, N.M.; Brcanovic, M.J. Evaluation of individual phenolic compounds and antioxidant properties of black, green, herbal and fruit tea infusions consumed in Serbia: Spectrophotometrical and electrochemical approaches. J. Food Nutr. Res. 2013, 52, 12–24. [Google Scholar]
- Pereira, V.P.; Knor, F.J.; Vellosa, J.C.R.; Beltrame, F.L. Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae. Rev. Bras. Pl. Med. 2014, 16, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Kelebek, H. LC-DAD–ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature. Food Chem. 2016, 204, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Hwang, L.S.; Lin, J.T. Effects of different steeping methods and storage on caffeine, catechins and gallic acid in bag tea infusions. J. Chromatogr. A 2007, 1156, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.C.; Wu, W.H.; Lai, S.T.; Lin, W.J.; Hua-Chien, L.; Chin-Feng, C. Kinetics investigation of antioxidant capacity and total phenols of low-temperature steeping Bi Luo Chun green tea. Int. J. Food Sci. Tech. 2012, 47, 2009–2014. [Google Scholar] [CrossRef]
- Mello, L.D.; Alves, A.A.; Macedo, D.V.; Kubota, L.T. Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem. 2005, 92, 515–519. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Anesini, C.; Ferraro, G.E.; Filip, R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 2008, 56, 9225–9229. [Google Scholar] [CrossRef]
- Shiraki, M.; Hara, Y.; Osawa, T.; Kumon, H.; Nakayama, T.; Kawakishi, S. Antioxidative and antimutagenic effects of theaflavins from black tea. Mutat. Res. 1994, 323, 29–34. [Google Scholar] [CrossRef]
- Miller, N.J.; Castelluccio, C.; Tijburg, L.; Rice-Evans, C. The antioxidant properties of theaflavins and their gallate esters - radical scavengers or metal chelators? FEBS Lett. 1996, 392, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Kaur, M.; Kaur, P.; Kaur, H.; Kaur, S.; Kaur, K. Estimation of total phenolic and antioxidants in green tea and black tea. Global J. Biotechnol. Biochem. Res. 2015, 4, 116–120. [Google Scholar]
- Nibir, Y.M.; Sumit, A.F.; Akhand, A.A.; Ahsan, N.; Hossain, M.S. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac. J. Trop. Biomed. 2017, 7, 352–357. [Google Scholar] [CrossRef]
- Minnelli, C.; Laudadio, E.; Mobbili, G.; Galeazzi, R. Conformational insight on WT- and mutated-EGFR receptor activation and inhibition by epigallocatechin-3-gallate: over a rational basis for the design of selective non-small-cell lung anticancer agents. Int. J. Mol. Sci. 2020, 21, 1721. [Google Scholar] [CrossRef] [Green Version]
- Enko, J.; Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms. Food Addit. Contam. 2015, 32, 1234–1242. [Google Scholar] [CrossRef]
- Dias, P.M.; Changarath, J.; Damodaran, A.; Joshi, M.K. Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J. Agric. Food Chem. 2014, 62, 6655–6668. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
- Camargo, L.E.A.; Pedroso, L.S.; Vendrame, S.C.; Mainardes, R.M.; Khalil, N.M. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Braz. J. Biol. 2016, 76, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Ma, Z.; Kitts, D.D. Demonstrating the relationship between the phytochemical profile of different teas with relative antioxidant and anti-inflammatory capacities. Funct. Foods Health Dis. 2017, 7, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Rababah, T.M.; Hettiarachchy, N.S.; Horax, R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J. Agric. Food Chem. 2004, 52, 5183–5186. [Google Scholar] [CrossRef]
Temperature (°C) | |||||
---|---|---|---|---|---|
60 | 70 | 80 | 90 | 100 | |
Total phenolic content (mg GAE/g dry leaf) | 50.4 ± 5.2 | 72.6 ± 7.9 | 104.1 ± 7.0 | 135.2 ± 8.5 | 178.6 ± 16.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-Y.; Lin, Y.-Y.; Chang, Y.-C.; Huang, W.-Y.; Lin, W.-S.; Chen, C.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea. Appl. Sci. 2020, 10, 2685. https://doi.org/10.3390/app10082685
Chang M-Y, Lin Y-Y, Chang Y-C, Huang W-Y, Lin W-S, Chen C-Y, Huang S-L, Lin Y-S. Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea. Applied Sciences. 2020; 10(8):2685. https://doi.org/10.3390/app10082685
Chicago/Turabian StyleChang, Min-Yun, Yin-Yi Lin, Yu-Chia Chang, Wen-Ying Huang, Wen-Shin Lin, Cheng-You Chen, Shu-Ling Huang, and Yung-Sheng Lin. 2020. "Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea" Applied Sciences 10, no. 8: 2685. https://doi.org/10.3390/app10082685
APA StyleChang, M.-Y., Lin, Y.-Y., Chang, Y.-C., Huang, W.-Y., Lin, W.-S., Chen, C.-Y., Huang, S.-L., & Lin, Y.-S. (2020). Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea. Applied Sciences, 10(8), 2685. https://doi.org/10.3390/app10082685