Unravelling the Link Between Crustal Extension, Strain Localization and Magmatism in the Northern South China Sea
Abstract
1. Introduction
2. Geological Setting


3. Dataset and Methodology
3.1. Dataset
3.2. Seismic Interpretation Approach
3.3. Workflow Used to Reconstruct the SCS Crustal Configuration
4. The Crustal Taper in the SCS
5. Crustal Architecture, Structures and Accommodation in the N-SCS Central Corridor
5.1. Nature of Tb and Its Relation to the Underlying Basement and Overlying Sediments
5.1.1. Seismic Character of Tb
5.1.2. Drill-Hole Observations
5.2. Crustal Structure of the N-SCS Central Corridor According to Seismic Sections
5.2.1. Profile 100
5.2.2. Profile 2512
5.2.3. Profile 6200
5.2.4. Profile 1555
5.3. Sediment Accommodation in the Central N-SCS
6. Discussion
6.1. A New Approach to Describe Rift Evolution
6.1.1. The Crustal Shape Approach
6.1.2. Defining the Nature of Tb: A Key to Understand Extension Modes
6.2. Control of Crustal Flow and Magma in Localizing Strain and Crustal Thinning
6.2.1. Crustal Flow vs. Crustal Thinning
6.2.2. Syn-Rift Magma and Its Role in Crustal Thinning and Strain Localization
6.3. Rift Evolution Along the N-SCS
6.3.1. The Inherited, Pre-Tg Stage
6.3.2. The Wide Rift Stage (Tg to T80)
6.3.3. The Tapering Stage (T80 to T70)
6.3.4. The Spreading Stage (Post-T70)
6.4. Factors Controlling Rift Evolution in the SCS and Comparison with Atlantic-Type Systems
6.4.1. Localized Crustal Thinning: From Observations to Interpretations
- When crustal tapering occurs, crustal thinning (Ct) dominates over crustal flow (Cf) and magmatic additions (Ma) (i.e., Ct > Cf + Ma);
- When crustal thinning initiates, extension localizes within the tapering domain;
- In the tapering domain, accommodation space creation is delayed relative to crustal thinning.
Control of Subduction Inheritance
Importance of Boundary Conditions
6.4.2. Factors Controlling Rifting in the SCS
6.4.3. Localized Crustal Thinning (Necking): SCS vs. Atlantic
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NL | Necking line |
| BL | Breakup line |
| Tb | Top of basement |
| Tbt | Top basement of tectonic origin |
| Tbs | Top basement of stratigraphic origin |
| Ri | Reflection of initial brittle ductile transition |
| Rd | Reflection of sub-horizontal decoupling level |
| Rf | Reflection of fault surface |
| Ct | Crustal thinning |
| Ma | Magmatic additions |
| Cf | Crustal flow |
| OCT | Ocean–continent transition |
| N-SCS | Northern South China Sea |
References
- Buck, W.R. Modes of continental lithospheric extension. J. Geophys. Res. 1991, 96, 20161–20178. [Google Scholar] [CrossRef]
- Pérez-Gussinyé, M.; Collier, J.S.; Armitage, J.J.; Hopper, J.R.; Sun, Z.; Ranero, C.R. Towards a process-based understanding of rifted continental margins. Nat. Rev. Earth Environ. 2023, 4, 166–184. [Google Scholar] [CrossRef]
- Osmundsen, P.T.; Redfield, T.F. Crustal taper and topography at passive continental margins. Terra Nova 2011, 23, 349–361. [Google Scholar] [CrossRef]
- Chenin, P.; Tomasi, S.; Kusznir, N.; Manatschal, G. Linking rifted margin crustal shapewith the timing and volume of magmatism. Terra Nova 2024, 36, 53–61. [Google Scholar] [CrossRef]
- Huismans, R.; Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 2011, 473, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Brune, S.; Heine, C.; Perez-Gussinye, M.; Sobolev, S.V. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat. Commun. 2014, 5, 4014. [Google Scholar] [CrossRef]
- McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 1978, 40, 25–32. [Google Scholar] [CrossRef]
- Kusznir, N.J.; Karner, G.D. Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: Application to the Woodlark, Newfoundland and Iberia margins. Geol. Soc. Lond. Spec. Publ. 2007, 282, 389–419. [Google Scholar] [CrossRef]
- Huang, H.; Klingelhoefer, F.; Qiu, X.; Li, Y.; Wang, P. Seismic imaging of an intracrustal deformation in the northwestern margin of the South China Sea: The role of a ductile layer in the crust. Tectonics 2021, 40, e2020TC006260. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, J.; Pang, X.; Yang, L.; Zheng, J. Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea. Mar. Pet. Geol. 2018, 89, 687–700. [Google Scholar] [CrossRef]
- Li, G.; Ye, Q.; Peng, G.; Liu, Z.; Zhang, L.; Hao, S.; Xu, X.; Mei, L. Development of detachment fault system associated with a mature metamorphic core complex: Insight from the Kaiping Sag, northern South China Sea rifted margin. Basin Res. 2024, 36, e70006. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, J.; Zhao, Y.; Zheng, J.; Lei, C.; Zhu, D. Consequences of continental core complexes on rifting patterns: Insights from multichannel seismic data from the northern margin of the South China Sea. Tectonics 2024, 43, e2023TC007870. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Jiang, D.; Xu, X.; Delogkos, E.; Zhang, L.; Camanni, G. 3-D structure and development of a metamorphic core complex in the northern south China sea rifted margin. J. Geophys. Res. 2022, 127, e2021JB022595. [Google Scholar] [CrossRef]
- Wang, J.; Pang, X.; Liu, B.; Zheng, J.; Wang, H. The Baiyun and Liwan Sags: Two supradetachment basins on the passive continental margin of the northern South China Sea. Mar. Pet. Geol. 2018, 95, 206–218. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Z.; Manatschal, G.; Pang, X.; Qiu, N.; Su, M.; Zheng, J.; Li, H.; Gu, Y.; Zhang, J.; et al. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Res. 2021, 91, 81–96. [Google Scholar] [CrossRef]
- Chao, P.; Manatschal, G.; Chenin, P.; Ren, J.; Zhang, C.; Pang, X.; Zheng, J.; Yang, L.; Kusznir, N. The tectono-stratigraphic and magmatic evolution of conjugate rifted margins: Insights from the NW South China Sea. J. Geodyn. 2021, 148, 101877. [Google Scholar] [CrossRef]
- Larsen, H.C.; Mohn, G.; Nirrengarten, M.; Sun, Z.; Stock, J.; Jian, Z.; Klaus, A.; Alvarez-Zarikian, C.A.; Boaga, J.; Bowden, S.A.; et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 2018, 11, 782–789. [Google Scholar] [CrossRef]
- Coney, P.J.; Harms, T.A. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology 1984, 12, 550–554. [Google Scholar] [CrossRef]
- Crittenden, M.; Coney, P.J.; Davis, G. Tectonic significance of metamorphic core complexes in the north American Cordillera. Geology 1978, 6, 135–151. [Google Scholar] [CrossRef]
- Lister, G.S.; Davis, G.A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River Region, U.S.A. J. Struct. Geol. 1989, 11, 65–94. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Dong, S.; Johnston, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Zahirovic, S.; Seton, M.; Müller, R.D. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth 2014, 5, 227–273. [Google Scholar] [CrossRef]
- Zhou, D.; Ru, K.; Chen, H.Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics 1995, 251, 161–177. [Google Scholar] [CrossRef]
- Gilder, S.A.; Gill, J.; Coe, R.S.; Zhao, X.; Liu, Z.; Wang, G.; Yuan, K.; Liu, W.; Kuang, G.; Wu, H. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J. Geophys. Res. 1996, 101, 16137–16154. [Google Scholar] [CrossRef]
- Shu, L.; Sun, Y.; Wang, D.; Faure, M.; Monie, P.; Charvet, J. Mesozoic doming extensional tectonics of Wugongshan, South China. Sci. China Ser. D Earth Sci. 1998, 41, 601–608. [Google Scholar] [CrossRef]
- Wang, D.Z.; Shu, L.S.; Faure, M.; Zhan, S. Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi province and their genetical relationship to the tectonic events in southeast China. Tectonophysics 2001, 339, 259–277. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H.; Chung, S.-L.; Lo, C.-H.; Xu, X.; Li, W.-X. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics 2012, 532–535, 271–290. [Google Scholar] [CrossRef]
- Schlüter, H.U.; Hinz, K.; Block, M. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Mar. Geol. 1996, 130, 39–51, 58–78. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Yang, H. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. J. Geophys. Res. 2018, 123, 6215–6235. [Google Scholar] [CrossRef]
- Zhang, C.; Manatschal, G.; Taylor, B.; Sun, Z.; Zhao, M.; Zhang, J. Characterization and mapping of continental breakup and seafloor spreading initiation: The example of the northern rifted margin of the South China Sea. Basin Res. 2024, 36, e12882. [Google Scholar] [CrossRef]
- Li, P. Cenozoic tectonic movement in the Pearl River Mouth Basin. China Offshore Oil Gas (Geol.) 1993, 7, 11–17. [Google Scholar]
- Briais, A.; Patriat, P.; Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 1993, 98, 6299–6328. [Google Scholar] [CrossRef]
- Taylor, B.; Hayes, D.E. Origin and history of the South China Sea basin. Geophys. Monogr. Ser. 1983, 27, 23–56. [Google Scholar] [CrossRef]
- Ji, W.; Faure, M.; Lin, W.; Chen, Y.; Chu, Y.; Xue, Z. Multiple emplacement and exhumation history of the Late Mesozoic Dayunshan–Mufushan batholith in southeast China and its tectonic significance: 1. Structural analysis and geochronological constraints. J. Geophys. Res. 2018, 123, 689–710. [Google Scholar] [CrossRef]
- Shu, L.; Zhou, X.M.; Deng, P.; Zhu, W. Mesozoic-Cenozoic basin features and evolution of Southeast China. Acta Geol. Sinica [English edition] 2007, 81, 573–586. [Google Scholar]
- Shu, L.S.; Zhou, X.M.; Deng, P.; Wang, B.; Jiang, S.Y.; Yu, J.H.; Zhao, X.X. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. J. Asian Earth Sci. 2009, 34, 376–391. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhou, Z.; Hao, H.; Chen, H.; Wang, J.; Chen, B.; Wu, J. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. J. Asian Earth Sci. 2008, 31, 546–561. [Google Scholar] [CrossRef]
- Yan, P.; Wang, L.; Wang, Y. Late Mesozoic compressional folds in Dongsha Waters, the northern margin of the South China Sea. Tectonophysics 2014, 615–616, 213–223. [Google Scholar] [CrossRef]
- Pan, Z.; Lu, S.; Gao, H.; He, Q.; Chen, H. The effect of pre-existing structures on the Cenozoic rifting processes: Insights from seismic reflection imaging of the northeastern South China Sea. J. Struct. Geol. 2024, 188, 105257. [Google Scholar] [CrossRef]
- Deng, H.; Ren, J.; Pang, X.; Rey, P.F.; McClay, K.R.; Watkinson, I.M.; Zheng, J.; Luo, P. South China Sea documents the transition from wide continental rift to continental break up. Nat. Commun. 2020, 11, 4583. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Z.; Huang, X.; Jiang, Y.; Stock, J.M. Microstructures documenting Cenozoic extension processes in the northern continental margin of the South China Sea. Int. Geol. Rev. 2020, 62, 1094–1107. [Google Scholar] [CrossRef]
- Zhang, C.; Manatschal, G.; Pang, X.; Sun, Z.; Zheng, J.; Li, H.; Sun, L.; Zhang, J.; Zhao, Y. Discovery of mega-sheath folds flooring the Liwan subbasin (South China Sea): Implications for the rheology of hyperextended crust. Geochem. Geophys. Geosyst 2020, 21, e2020GC009023. [Google Scholar] [CrossRef]
- Pang, X.; Zheng, J.; Mei, L.; Liu, B.; Zhang, Z.; Wu, Z.; Feng, X. Structural diversity of fault depressions under the background of preexisting subduction continental margin, Pearl River Mouth Basin, China. Pet. Exp. Dev. 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, J.; Qiu, N.; Jian, Z.M.; Wang, P.X.; Pang, X.; Zheng, J.; Zhu, B. The role of magmatism in the thinning and breakup of the South China Sea continental margin. Nat. Sci. Rev. 2019, 6, 871–876. [Google Scholar] [CrossRef]
- Hall, R. Reconstructing Cenozoic SE Asia. In Tectonic Evolution of SE Asia; Hall, R., Blundell, D.J., Eds.; Geological Society of London: London, UK, 1996; Volume 106, pp. 153–184. [Google Scholar]
- Taylor, B. Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea. Geosciences 2025, 15, 152. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Shi, H.; Camanni, G.; Shu, Y.; Wu, J.; Yu, L.; Deng, P.; Li, G. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth Sci. Rev. 2018, 187, 186–204. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, W.; Ren, J.; Li, J.; Tong, D.; Zhang, J. Extension Discrepancy of the Hyper-Thinned Continental Crust in the Baiyun Rift, Northern Margin of the South China Sea. Tectonics 2021, 40, e2020TC006547. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Yang, H.; Lin, J.; Stock, J.M.; Zhao, Z.; Xu, H.; Sun, L. Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin. Tectonics 2020, 39, e2020TC006409. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, N.; Sun, Z. The sedimentary record of the Sanshui Basin: Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea. J. Oceanol. Limnol. 2023, 41, 532–549. [Google Scholar] [CrossRef]
- Nissen, S.S.; Hayes, D.E.; Yao, B.; Zeng, W.; Chen, Y.; Nu, X. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. J. Geophys. Res. 1995, 100, 22447–22483. [Google Scholar] [CrossRef]
- Webb, M.; Endinanda, F.; Gough, A. Mesozoic magmatism of Natuna Island, Indonesia: Impplications for the Subduction history of eastern Sundaland. Gondw. Res. 2023, 119, 45–67. [Google Scholar] [CrossRef]
- Kudrass, H.R.; Wiedicke, M.; Cepek, P.; Kreuzer, H.; Müller, P. Mesozoic and Cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions. Mar. Pet. Geol. 1986, 3, 19–30. [Google Scholar] [CrossRef]
- Shao, L.; You, H.; Hao, H.; Wu, G.; Qiao, P.; Lei, Y. Petrology and depositional environments of Mesozoic strata in the Northeastern South China Sea. Geol. Rev. 2007, 53, 164–169. [Google Scholar]
- Shi, H.; Li, C.-F. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea. Int. Geol. Rev. 2012, 54, 1801–1828. [Google Scholar] [CrossRef]
- Pang, X.; Chen, C.; Peng, D.; Zhu, M.; Shu, Y.; He, M.; Shen, J.; Liu, B. Sequence stratigraphy of deepwater fan system of Pearl River, South China Sea. Earth Sci. Front. 2007, 14, 220–229. [Google Scholar] [CrossRef]
- Sutra, E.; Manatschal, G.; Mohn, G.; Unternehr, P. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst 2013, 14, 2575–2597. [Google Scholar] [CrossRef]
- Warner, M.R. Seismic reflections from the Moho: The effect of isostasy. Geophys. J. Int. 1987, 88, 425–435. [Google Scholar] [CrossRef]
- Lavier, L.L.; Buck, W.R.; Poliakov, A.N.B. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 1999, 27, 1127–1130. [Google Scholar] [CrossRef]
- Wilson, R.C.L.; Manatschal, G.; Wise, S. Rifting along non-volcanic passive margins: Stratigraphic and seismic evidence from the Mesozoic succession of the Alps and western Iberia. In Non-Volcanic Rifting of Continental Margins: Evidence From Land and Sea; Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., Froitzheim, N., Eds.; Geological Society of London: London, UK, 2001; Volume 187, pp. 429–452. [Google Scholar]
- Gozzard, S.; Kusznir, N.; Franke, D.; Cullen, A.; Reemst, P.; Henstra, G. South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion. Pet. Geosci. 2019, 25, 112–128. [Google Scholar] [CrossRef]
- Song, T.; Li, C.-F.; Wu, S.; Yao, Y.; Gao, J. Extensional styles of the conjugate rifted margins of the South China Sea. J. Asian Earth Sci. 2019, 177, 117–128. [Google Scholar] [CrossRef]
- Larsen, H.C.; Jian, Z.; Alvarez Zarikian, C.A.; Sun, Z.; Stock, J.M.; Klaus, A.; Boaga, J.; Bowden, S.A.; Briais, A.; Chen, Y.; et al. Site U1501. In Proceedings of the International Ocean Discovery Program 367/368, 2018a; Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., et al., Eds.; IODP Publication Services: College Station, TX, USA, 2018. [Google Scholar] [CrossRef]
- Larsen, H.C.; Jian, Z.; Alvarez Zarikian, C.A.; Sun, Z.; Stock, J.M.; Klaus, A.; Boaga, J.; Bowden, S.A.; Briais, A.; Chen, Y.; et al. Site U1504. In Proceedings of the International Ocean Discovery Program 367/368, 2018b; Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., et al., Eds.; IODP Publication Services: College Station, TX, USA, 2018. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Z.; Zhang, Y.; Zhao, Z.; Zhao, J.; Zhang, C.; Zhang, Z.; Sun, L.; Zhu, X. Multi-stage carbonate veins at IODP Site U1504 document early Cretaceous to early Cenozoic extensional events on the South China Sea margin. Mar. Geol. 2021, 442, 106656. [Google Scholar] [CrossRef]
- Whitmarsh, R.B.; Beslier, M.-O.; Wallace, P.J.; Abe, N.; Basile, C.; Beard, J.S.; Froitzheim, N.; Gardien, V.; Hébert, R.; Hopkinson, L.J.; et al. Proceedings of the Ocean Drilling Program, Initial Report, 173; Ocean Drilling Program: College Station, TX, USA, 1998. [Google Scholar] [CrossRef]
- Hao, S.; Mei, L.; Ranero, C.R.; Zhou, Z.; Pang, X.; Zheng, J. 3D crustal architecture and along-strike variation in the mid-northern South China Sea rifted margin. J. Geophys. Res. 2024, 129, e2023JB026876. [Google Scholar] [CrossRef]
- Reston, T.J. Evidence for shear zones in the lower crust offshore Britain. Tectonics 1988, 7, 929–945. [Google Scholar] [CrossRef]
- Clerc, C.; Jolivet, L.; Ringenbach, J.-C. Ductile extensional shear zones in the lower crust of a passive margin. Earth Planet. Sci. Lett. 2015, 431, 1–7. [Google Scholar] [CrossRef]
- Gao, J.; Wu, S.; McIntosh, K.; Mi, L.; Yao, B.; Chen, Z.; Jia, L. The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics 2015, 654, 1–19. [Google Scholar] [CrossRef]
- Nirrengarten, M.; Mohn, G.; Kusznir, N.J.; Sapin, F.; Despinois, F.; Pubellier, M.; Chang, S.P.; Larsen, H.C.; Ringenbach, J.C. Extension modes and breakup processes of the southeast China-Northwest Palawan conjugate rifted margins. Mar. Pet. Geol. 2020, 113, 104123. [Google Scholar] [CrossRef]
- Yan, P.; Zhou, D.; Liu, Z. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics 2001, 338, 1–21. [Google Scholar] [CrossRef]
- Reston, T.J. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics 2009, 468, 6–27. [Google Scholar] [CrossRef]
- Hopper, J.R.; Buck, W.R. The effect of lower crustal flow on continental extension and passive margin formation. J. Geophys. Res. 1999, 101, 20175–20194. [Google Scholar] [CrossRef]
- Clift, P.; Lin, J.; Barckhausen, U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Mar. Petrol. Geol. 2002, 19, 951–970. [Google Scholar] [CrossRef]
- Clift, P.D. Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea. Geosci. Lett. 2015, 2, 13. [Google Scholar] [CrossRef]
- Morley, C.K.; Westaway, R. Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: A coupled model incorporating lower-crustal flow in response to post-rift sediment loading. Basin Res. 2006, 18, 51–84. [Google Scholar] [CrossRef]
- Ren, J.; Pang, X.; Lei, C.; Yuan, L.; Liu, J.; Yang, L. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea. Earth Sci. Front. 2015, 22, 102–114. [Google Scholar]
- Brun, J.P.; Sokoutis, D.; Van Den Driessche, J. Analogue modeling of detachment fault systems and core complexes. Geology 1994, 22, 319–322. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.M.; Soto, J.I.; Balanyá, J.C. Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 2002, 21, 1012. [Google Scholar] [CrossRef]
- Rey, P.F.; Teyssier, C.; Whitney, D.L. Extension rates, crustal melting, and core complex dynamics. Geology 2009, 37, 391–394. [Google Scholar] [CrossRef]
- Tirel, C.; Brun, J.-P.; Burov, E. Dynamics and structural development of metamorphic core complexes. J. Geophys. Res. 2008, 113, B04403. [Google Scholar] [CrossRef]
- Pérez-Gussinyé, M.; Reston, T.J. Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. J. Geophys. Res. 2001, 106, 3961–3975. [Google Scholar] [CrossRef]
- Yang, P.; Pérez-Gussinyé, M.; Liu, S.; García-Pintado, J.; RaghuRam, G. Interactions between syn-rift magmatism and tectonic extension at intermediate rifted margins. Earth Planet. Sci. Lett. 2025, 671, 119682. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Ding, W.; Ranero, C.R.; Sallares, V.; Gao, J.; Zhang, C.; Qiu, X. New insights into the rift- to- drift process of the northern South China Sea margin constrained by a three- dimensional OBS seismic velocity model. J. Geophys. Res. 2023, 128, e2022JB026171. [Google Scholar] [CrossRef]
- Gallahue, M.M.; Stein, S.; Stein, C.A.; Jurdy, D.; Barklage, M.; Rooney, T.O. A compilation of igneous rock volumes at volcanic passive continental margins from interpreted seismic profiles. Mar. Pet. Geol. 2020, 122, 104635. [Google Scholar] [CrossRef]
- Nagao, T.; Uyeda, S. Heat flow measurements in the northern part of Honshu, northeast Japan, using shallow holes. Tectonophysics 1989, 164, 301–314. [Google Scholar] [CrossRef]
- Springer, M.; Förster, A. Heat-flow density across the Central Andean subduction zone. Tectonophyiscs 1998, 291, 123–139. [Google Scholar] [CrossRef]
- Taylor, B.; Huchon, P. Active Continental Extension in the Western Woodlark Basin: A Synthesis of Leg 180 results. In Proceedings of the Ocean Drilling Program Scientific Results; Huchon, P., Taylor, B., Klaus, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 2002; Volume 180, pp. 1–36. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Currie, C.A.; Mazzotti, S.P. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 2005, 15, 4–10. [Google Scholar] [CrossRef]
- Manea, V.C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R.W.; Husker, A.; Kostoglodov, V. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics 2017, 695, 27–52. [Google Scholar] [CrossRef]
- Brune, S.; Williams, S.; Butterworth, N.; Müller, R.D. Abrupt plate accelerations shape rifted continental margins. Nature 2016, 536, 201–204. [Google Scholar] [CrossRef]
- Corti, G.; van Wijk, J.; Cloetingh, S.; Morley, C.K. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics 2007, 26, TC6006. [Google Scholar] [CrossRef]
- Peng, X.; Li, C.; Song, T.; Wan, X.; Hou, W.; Wen, Y.; Li, Y.; Liu, Y.; Tang, F. Deep structures and lithospheric breakup processes at the northern continent-ocean transition zone of the South China Sea. Earth Sci. 2022, 47, 4245–4255. [Google Scholar] [CrossRef]
- Chenin, P.; Manatschal, G. Fingerprints of necking domains at rifted margins: A review of the best-documented examples worldwide. Earth Sci. Rev. 2025, 265, 105110. [Google Scholar] [CrossRef]
- Savva, D.; Pubellier, M.; Franke, D.; Chamot-Rooke, N.; Meresse, F.; Steuer, S.; Auxietre, J.L. Different expressions of rifting on the South China Sea margins. Mar. Pet. Geol. 2014, 58, 579–598. [Google Scholar] [CrossRef]
- Le Pourhiet, L.; Chamot-Rooke, N.; Delescluse, M.; May, D.A.; Watremez, L.; Pubellier, M. Continental break-up of the South China Sea stalled by far-field compression. Nat. Geosci. 2018, 11, 605–609. [Google Scholar] [CrossRef]
- Salazar-Mora, C.A.; Sacek, V. Effects of tectonic quiescence between orogeny and rifting. Tectonics 2023, 42, e2022TC007492. [Google Scholar] [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, C.; Manatschal, G.; Chenin, P.; Kusznir, N.; Li, S.; Suo, Y.; Zhao, Z. Unravelling the Link Between Crustal Extension, Strain Localization and Magmatism in the Northern South China Sea. Geosciences 2026, 16, 26. https://doi.org/10.3390/geosciences16010026
Zhang C, Manatschal G, Chenin P, Kusznir N, Li S, Suo Y, Zhao Z. Unravelling the Link Between Crustal Extension, Strain Localization and Magmatism in the Northern South China Sea. Geosciences. 2026; 16(1):26. https://doi.org/10.3390/geosciences16010026
Chicago/Turabian StyleZhang, Cuimei, Gianreto Manatschal, Pauline Chenin, Nick Kusznir, Sanzhong Li, Yanhui Suo, and Zhongxian Zhao. 2026. "Unravelling the Link Between Crustal Extension, Strain Localization and Magmatism in the Northern South China Sea" Geosciences 16, no. 1: 26. https://doi.org/10.3390/geosciences16010026
APA StyleZhang, C., Manatschal, G., Chenin, P., Kusznir, N., Li, S., Suo, Y., & Zhao, Z. (2026). Unravelling the Link Between Crustal Extension, Strain Localization and Magmatism in the Northern South China Sea. Geosciences, 16(1), 26. https://doi.org/10.3390/geosciences16010026

