The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Local and Animals
2.2. Adjusts to Experiment and Facility
2.3. Experimental Diets and Design
2.4. Experimental Variables
2.5. Statistical Analyses
3. Results
3.1. Performance
3.2. Egg Quality
3.3. Bone Quality
4. Discussion
4.1. Performance
4.2. Nutrition and Health Concerns
4.3. Egg Components and Quality
4.4. Trehalose Digestion
4.5. Enzymatic Specificity in Carbohydrate Digestion and Metabolism
4.6. Growth Performance, Intestinal Health, and Energy Efficiency
4.7. Calcium Absorption and Mobilization
4.8. Protective Mechanisms and Antioxidant Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aoki, N.; Furukawa, S.; Sato, K.; Kurokawa, Y.; Kanda, S.; Takahashi, Y.; Mitsuzumi, H.; Itabashi, H. Supplementation of the diet of dairy cows with trehalose results in milk with low lipid peroxide and high antioxidant content. J. Dairy Sci. 2010, 93, 4189–4195. [Google Scholar] [CrossRef] [PubMed]
- Kikusato, M.; Nanto, F.; Mukai, K.; Toyomizu, M. Effects of trehalose supplementation on the growth performance and intestinal innate immunity of juvenile chicks. Br. Poult. Sci. 2016, 57, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-C.; Wu, Y.-T.; Wu, Y.-H.S.; Wang, C.-L.; Chou, C.-H.; Chen, Y.-C.; Tsai, H.-J. Investigation of Trehalose Supplementation Impacting Campylobacter jejuni and Clostridium perfringens from Broiler Farming. Vet. Sci. 2023, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Sooksridang, T.; Rachatapibul, C.; Srinongkote, S.; Mukai, K.; Kikusato, M. Trehalose Supplementation Effects on Growth, Intestinal Morphology, Gut Bacteria, and Footpad Dermatitis of Broiler Chickens Reared at High Density. J. Poult. Sci. 2024, 61, 2024001. [Google Scholar] [CrossRef] [PubMed]
- Stanishevskaya, O.I.; Silyukova, Y.; Fedorova, E.; Pleshanov, N.; Kurochkin, A.; Tereshina, V.M.; Ianutsevich, E. Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol. Animals 2023, 13, 1023. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais; Departamento de Zootecnia: Viçosa, Brazil, 2017. [Google Scholar]
- Card, L.E.; Nesheim, M.C. Producción Avícola; Acribia: Zaragoza, Spain, 1968. [Google Scholar]
- Hamilton, R.M.G. Methods and factors that affect the measurement of eggshell quality. Poult. Sci. 1982, 61, 2022–2039. [Google Scholar] [CrossRef]
- Cherian, G.; Traber, M.G.; Goeger, M.P.; Leonard, S.W. Conjugated linoleic acid and fish oil in laying hen diets: Effects on egg fatty acids, thiobarbituric acid reactive substances, and tocopherols during storage. Poult. Sci. 2007, 86, 953–958. [Google Scholar] [CrossRef]
- Park, S.Y.; Birkhold, S.G.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Effect of storage condition on bone breaking strength and bone ash in laying hens at different stages in production cycles. Poult. Sci. 2003, 82, 1688–1691. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International: Agricultural Chemicals, Contaminants, Drugs; AOAC International: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Dahlqvist, A. Specificity of the human intestinal disaccharidases and implications for hereditary disaccharide intolerance. J. Clin. Investig. 1962, 41, 463–470. [Google Scholar] [CrossRef]
- Dahlqvist, A. Enzyme deficiency and malabsorption of carbohydrates. In Sugars in Nutrition; Sipple, H., Ed.; Academic Press: New York, NY, USA, 1974; pp. 154–196. [Google Scholar]
- Richards, A.B.; Krakowka, S.; Dexter, L.B.; Schmid, H.; Wolterbeek, A.P.; Waalkens-Berendsen, D.H.; Shigoyuki, A.; Kurimoto, M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 2002, 40, 871–889. [Google Scholar] [CrossRef]
- Yasugi, T.; Yamada, T.; Nishimura, T. Adaptation to dietary conditions by trehalose metabolism in Drosophila. Sci. Rep. 2017, 7, 1619. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Okamoto, K.; Minami, R.; Kohri, H.; Yamamoto, S. Trehalose can be used as a parenteral saccharide source in rabbits. J. Nutr. 1999, 129, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Chotinsky, D.; Toncheva, E.; Profirov, Y. Development of disaccharidase activity in the small intestine of broiler chickens. Br. Poult. Sci. 2001, 42, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Ruangpanit, Y.; Matsushita, K.; Mukai, K.; Kikusato, M. Effect of trehalose supplementation on growth performance and intestinal morphology in broiler chickens. Vet. Anim. Sci. 2020, 10, 100142. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Maleki, M.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms linking stress and insulin resistance. EXCLI J. 2022, 21, 317–334. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yang, W.Y.; Wu, Y.H.S.; Chen, J.W.; Chen, Y.C. Modulations of growth performance, gut microbiota, and inflammatory cytokines by trehalose on Salmonella Typhimurium-challenged broilers. Poult. Sci. 2020, 99, 4034–4043. [Google Scholar] [CrossRef]
- Brommage, R.; Binacua, C.; Antille, S.; Carrie, A.L. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J. Nutr. 1993, 123, 2186–2194. [Google Scholar] [CrossRef]
- Goda, T.; Suruga, K.; Takase, S.; Ezawa, I.; Hosoya, N. Dietary maltitol increases calcium content and breaking force of femoral bone in ovariectomized rats. J. Nutr. 1995, 125, 2869–2873. [Google Scholar] [CrossRef]
- Oku, K.; Sawatani, I.; Sugimoto, S.; Kanbe, M.; Takeuchi, K.; Murai, S.; Kurose, M.; Kubota, M.; Fukuda, S. Functional properties of trehalose. J. Appl. Glycosci. 2002, 49, 351–357. [Google Scholar] [CrossRef]
- Almeida Paz, I.C.L.; Mendes, A.A.; Quinterio, R.M.; Vulcano, L.C.; Takahashi, S.E.; Garcia, R.G.; Komiyama, C.M.; Balog, A.; Pelicia, K.; Wescheler, F. Bone mineral density of tibae and femura of broiler breeders: Growth, development and production. Rev. Bras. Cienc. Avic. 2006, 8, 75–82. [Google Scholar] [CrossRef]
- Kerschnitzki, M.; Zander, T.; Zaslansky, P.; Fratzl, P.; Shahar, R.; Wagermaier, W. Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone 2014, 69, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Shipov, A.; Sharir, A.; Zelzer, E.; Milgram, J.; Monsonego-Ornan, E.; Shahar, R. The influence of severe prolonged exercise restriction on the mechanical and structural properties of bone in an avian model. Vet. J. 2010, 184, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, S.; Akter, Y.; Nolan, B.; O’Shea, C. Investigation of variation in feed efficiency and egg quality in laying hens. In Proceedings of the Australian Poultry Science Symposium, Sydney, NSW, Australia, 13–15 February 2017; Volume 28, pp. 97–100. [Google Scholar]
- Barzegar, S.; Wu, S.; Choct, M.; Swick, R.A. Implementation of net energy evaluating system in laying hens: Validation by performance and egg quality. Poult. Sci. 2020, 5, 2624–2632. [Google Scholar] [CrossRef] [PubMed]
- Donnamaria, M.C.; Howard, E.I.; Grigera, J.R. Interaction of water with a,a-trehalose in solution: Molecular dynamics simulation approach. J. Chem. Soc. Faraday Trans. 1994, 90, 2731–2735. [Google Scholar] [CrossRef]
- Kawai, H.; Sakurai, M.; Inoue, Y.; Chujo, R.; Kobayashi, S. Hydration of oligosaccharides: Anomalous hydration ability of trehalose. Cryobiology 1992, 29, 599–606. [Google Scholar] [CrossRef]
- Ohtake, S.; Wang, Y.J. Trehalose: Current use and future applications. J. Pharm. Sci. 2011, 6, 2020–2053. [Google Scholar] [CrossRef]
- Arai, C.; Suyama, A.; Arai, S.; Arai, N.; Yoshizane, C.; Koya-Miyata, S.; Mizote, A.; Endo, S.; Ariyasu, T.; Mitsuzumi, H.; et al. Trehalose itself plays a critical role on lipid metabolism: Trehalose increases jejunum cytoplasmic lipid droplets which negatively correlated with mesenteric adipocyte size in both HFD-fed trehalase KO and WT mice. Nutr. Metab. 2020, 17, 2–12. [Google Scholar] [CrossRef]
- Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001, 276, 24261–24267. [Google Scholar] [CrossRef] [PubMed]
- Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tsujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. NMR and quantum chemical study on the OH and CH. O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003, 125, 12739–12748. [Google Scholar] [CrossRef]
- Herdeiro, R.S.; Pereira, M.D.; Panek, A.D.; Eleutherio, E.C. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Et Biophys. Acta 2006, 1760, 340–346. [Google Scholar] [CrossRef]
- Aoki, N.; Sato, K.; Kanda, S.; Mukai, K.; Obara, Y.; Itabashi, H. Time course of changes in antioxidant activity of milk from dairy cows fed a trehalose-supplemented diet. Anim. Sci. J. 2013, 84, 42–47. [Google Scholar] [CrossRef] [PubMed]
Items | Trehalose Levels (%) | |||||
---|---|---|---|---|---|---|
0.00 | 0.05 | 0.10 | 0.30 | 0.60 | 1.00 | |
Corn, 7.88% | 55.950 | 55.950 | 55.950 | 55.950 | 55.950 | 55.950 |
Soybean meal, 45.22% | 24.620 | 24.620 | 24.620 | 24.620 | 24.620 | 24.620 |
Soybean oil | 4.940 | 4.940 | 4.940 | 4.940 | 4.940 | 4.940 |
Limestone, 37% | 10.780 | 10.780 | 10.780 | 10.780 | 10.780 | 10.780 |
Dicalcium phosphate, 18% | 1.717 | 1.717 | 1.717 | 1.717 | 1.717 | 1.717 |
Salt | 0.488 | 0.488 | 0.488 | 0.488 | 0.488 | 0.488 |
DL-Methionine | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 |
L-Lysine HCl | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 |
Choline chloride | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 |
Vitamins | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 |
Minerals | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 |
Inert | 1.000 | 0.950 | 0.900 | 0.700 | 0.400 | - |
Trehalose | - | 0.050 | 0.100 | 0.300 | 0.600 | 1.000 |
Chemical Composition | ||||||
Linoleic Acid, % | 3.88 | 3.88 | 3.88 | 3.88 | 3.88 | 3.88 |
ME, kcal kg−1 | 2900 | 2900 | 2900 | 2900 | 2900 | 2900 |
CP, g kg−1 | 15.80 | 15.80 | 15.80 | 15.80 | 15.80 | 15.80 |
SID Methionine, % | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
SID Methionine + cysteine, % | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
SID Lysine, % | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 |
SID Threonine, % | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
SID Tryptophan, % | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
SID Valine, % | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 |
SID Arginine, % | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
SID Isoleucine, % | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
SID Leucine, % | 1.28 | 1.28 | 1.28 | 1.28 | 1.28 | 1.28 |
Calcium, % | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 |
Non-phytate P, % | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
Sodium, % | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
Chloride, % | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Potassium, % | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |
Fibre | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 |
Dry matter | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
Electrolytic balance mEq kg−1 | 153.00 | 153.00 | 153.00 | 153.00 | 153.00 | 153.00 |
Levels (%) | Parameters | |||||||
---|---|---|---|---|---|---|---|---|
FI (g/Hen) | EP (Egg Produced/ Hen) | EHH (%) | EW (g) | EM (g) | FCREm (g/g) | FCRDz (kg/dz) | LIVA (%) | |
0.00 | 101.40 ab | 0.9593 | 98.81 | 62.72 b | 60.16 b | 1.687 a | 1.270 ab | 100.00 |
0.05 | 103.57 a | 0.9638 | 99.27 | * 64.37 a | * 62.03 a | 1.671 a | 1.291 a | 97.38 |
0.10 | 103.08 a | 0.9609 | 98.97 | * 64.96 a | * 62.41 a | 1.652 ab | 1.287 a | 100.00 |
0.30 | 102.40 a | 0.9583 | 98.70 | * 64.61 a | * 61.91 a | 1.658 ab | 1.286 ab | 100.00 |
0.60 | 102.45 ab | 0.9483 | 97.68 | * 64.83 a | 61.46 ab | 1.668 a | 1.297 a | 99.88 |
1.00 | 99.81 b | 0.9621 | 98.76 | * 64.78 a | * 62.32 a | * 1.603 b | 1.246 b | 98.29 |
p value | 0.002 | 0.548 | 0.604 | <0.001 | 0.002 | 0.003 | 0.008 | 0.227 |
L | 0.002 | 0.262 | 0.214 | <0.001 | 0.091 | <0.001 | 0.041 | 0.214 |
Q | 0.018 | 0.391 | 0.315 | 0.002 | 0.072 | 0.181 | 0.002 | 0.381 |
SEM | 4.11 | 0.081 | 4.52 | 6.91 | 3.88 | 0.81 | 0.062 | 8.81 |
CV (%) | 1.71 | 1.79 | 1.81 | 1.09 | 1.82 | 2.29 | 2.10 | 2.68 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Levels (%) | RWS (%) | RWY (%) | RWA (%) | YC | HU | SG (g/cm3) | Tshell (μm) | SS (kgf) |
0.00 | 9.94 | 27.08 | 62.78 | 5.61 b | 83.01 | 1.087 | 0.442 | 3.761 |
0.05 | 9.95 | 27.55 | 62.49 | 5.75 ab | 82.36 | 1.087 | 0.449 | 3.518 |
0.10 | 9.94 | 26.99 | 63.07 | * 5.93 a | 82.23 | 1.088 | 0.448 | 3.514 |
0.30 | 9.91 | 27.02 | 63.09 | * 5.89 a | 81.26 | 1.088 | 0.448 | 3.519 |
0.60 | 9.82 | 26.91 | 63.27 | 5.60 b | 82.35 | 1.087 | 0.442 | 3.559 |
1.00 | 9.91 | 27.14 | 62.97 | 5.60 b | 81.83 | 1.088 | 0.445 | 3.711 |
p-value | 0.575 | 0.365 | 0.122 | <0.001 | 0.088 | 0.542 | 0.114 | 0.725 |
L | 0.478 | 0.412 | 0.219 | 0.003 | 0.092 | 0.172 | 0.274 | 0.616 |
Q | 0.512 | 0.331 | 0.264 | 0.008 | 0.081 | 0.476 | 0.382 | 0.812 |
SEM | 1.21 | 3.14 | 4.73 | 2.38 | 4.61 | 0.021 | 0.008 | 0.122 |
CV (%) | 1.55 | 2.25 | 0.90 | 2.60 | 1.36 | 0.11 | 1.56 | 9.14 |
Levels | Subperiods | ||||
---|---|---|---|---|---|
(%) | 1 | 2 | 3 | 4 | 5 |
0 | 0.122 | 0.123 | 0.124 | 0.131 | 0.135 b |
0.05 | 0.124 | 0.121 | 0.132 | 0.134 | 0.145 b |
0.1 | 0.131 | 0.134 | 0.142 | 0.144 | 0.143 b |
0.3 | 0.114 | 0.122 | 0.132 | 0.154 | 0.211 a,* |
0.6 | 0.124 | 0.131 | 0.136 | 0.156 | 0.262 a,* |
1.0 | 0.122 | 0.132 | 0.145 | 0.161 | 0.153 b |
p-value | 0.735 | 0.720 | 0.804 | 0.214 | 0.006 |
L | 0.812 | 0.655 | 0.712 | 0.132 | 0.004 |
Q | 0.732 | 0.781 | 0.733 | 0.312 | 0.012 |
SEM | 0.081 | 0.051 | 0.073 | 0.081 | 0.092 |
CV (%) | 6.87 | 4.36 | 5.43 | 7.62 | 5.62 |
Levels (%) | Parameters | |||||
---|---|---|---|---|---|---|
TW (g) | L (mm) | BS (kgf) | DM (g/kg) | P (g/kg) | Ca (g/kg) | |
0.00 | 8.50 b | 115.83 | 20.57 c | 462.3 | 101.1 | 170.2 |
0.05 | 9.00 ab | 117.19 | 21.88 bc | 459.2 | 103.4 | 167.2 |
0.10 | 8.64 ab | 116.77 | * 24.79 a | 451.2 | 99.3 | 168.4 |
0.30 | * 9.14 a | 117.97 | 21.08 c | 454.7 | 100.1 | 169.1 |
0.60 | 8.62 ab | 116.78 | 19.89 c | 461.4 | 102.2 | 162.2 |
1.00 | 8.77 ab | 116.21 | * 23.96 ab | 458.9 | 103.1 | 161.3 |
p value | 0.024 | 0.284 | <0.001 | 0.6402 | 0.890 | 0.596 |
L | 0.62 | 0.73 | 0.61 | 0.82 | 0.65 | 0.10 |
Q | 0.10 | 0.04 | 0.75 | 0.54 | 0.56 | 0.76 |
SEM | 0.032 | 4.23 | 2.54 | 10.61 | 3.81 | 5.92 |
CV (%) | 11.27 | 5.04 | 1.58 | 0.009 | 0.016 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.P.; Kaneko, I.; Ferreira, T.; Muniz, J.; Silva, E.; Lima, A.; Lima Neto, R.; Lima, M.R.; Moreira, T. The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens. Animals 2025, 15, 1318. https://doi.org/10.3390/ani15091318
Costa FP, Kaneko I, Ferreira T, Muniz J, Silva E, Lima A, Lima Neto R, Lima MR, Moreira T. The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens. Animals. 2025; 15(9):1318. https://doi.org/10.3390/ani15091318
Chicago/Turabian StyleCosta, Fernando Perazzo, Isabelle Kaneko, Thamires Ferreira, Jorge Muniz, Eliane Silva, Adiel Lima, Raul Lima Neto, Matheus Ramalho Lima, and Thiago Moreira. 2025. "The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens" Animals 15, no. 9: 1318. https://doi.org/10.3390/ani15091318
APA StyleCosta, F. P., Kaneko, I., Ferreira, T., Muniz, J., Silva, E., Lima, A., Lima Neto, R., Lima, M. R., & Moreira, T. (2025). The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens. Animals, 15(9), 1318. https://doi.org/10.3390/ani15091318