Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Performance Response
2.3. Incidence of Diarrhea
2.4. Intestinal Tissue
2.5. Morphometric Evaluation
2.6. Gene Expression of Pro-Inflammatory Proteins
2.7. Surgery and Sample Collection
2.8. Diets and Experimental Design
2.9. Experimental Procedure
2.10. Chemical Analysis
2.11. Calculation of Standardized Digestible Coefficients
2.12. Statistical Analysis
3. Results
3.1. Performance
3.2. Diarrhea Incidence and Fecal Score
3.3. Gut Morphometry
3.4. Immune Response
3.5. Amino Acid Digestibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rist, V.T.S.; Weiss, E.; Eklund, M.; Mosenthin, R. Impact of Dietary Protein on Microbiota Composition and Activity in the Gastrointestinal Tract of Piglets in Relation to Gut Health: A Review. Animal 2013, 7, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Torres-Pitarch, A.; Hermans, D.; Manzanilla, E.G.; Bindelle, J.; Everaert, N.; Beckers, Y.; Torrallardona, D.; Bruggeman, G.; Gardiner, G.E.; Lawlor, P.G. Effect of Feed Enzymes on Digestibility and Growth in Weaned Pigs: A Systematic Review and Meta-Analysis. Anim. Feed Sci. Technol. 2017, 233, 145–159. [Google Scholar] [CrossRef]
- Qiao, L.; Dou, X.; Song, X.; Chang, J.; Yi, H.; Xu, C. Targeting Mitochondria with Antioxidant Nutrients for the Prevention and Treatment of Postweaning Diarrhea in Piglets. Anim. Nutr. 2023, 15, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Munezero, O.; Kim, I.H. Effects of Protease Enzyme Supplementation in Weanling Pigs’ Diet with Different Crude Protein Levels on Growth Performance and Nutrient Digestibility. J. Anim. Sci. Technol. 2022, 64, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.C.; Duarte, M.E.; Kim, S.W. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals 2022, 12, 3478. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, S.; Lin, Y.; Fang, Z.; Che, L.; Xue, B.; Wu, D. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets. Animals 2020, 10, 210. [Google Scholar] [CrossRef]
- Liu, X.; Lian, M.; Zhao, M.; Huang, M. Advances in Recombinant Protease Production: Current State and Perspectives. World J. Microbiol. Biotechnol. 2024, 40, 144. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Ling, B.; Long, L.; Li, T.; Lahaye, L. Effect of Dietary Supplementation with Protease on Growth Performance, Nutrient Digestibility, Intestinal Morphology, Digestive Enzymes and Gene Expression of Weaned Piglets. Anim. Nutr. 2015, 1, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, J.J.; Yang, B.M.; Cho, J.H.; Kim, S.; Kang, J.; Oh, S.; Park, D.-J.; Perez-Maldonado, R.; Cho, J.-Y.; et al. Dietary Protease Improves Growth Performance, Nutrient Digestibility, and Intestinal Morphology of Weaned Pigs. J. Anim. Sci. Technol. 2020, 62, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Lee, J.H.; Kim, T.H.; Song, M.H.; Yun, W.; Oh, H.J.; Lee, J.S.; Kim, H.B.; Cho, J.H. Effect of Low Protein Diets Added with Protease on Growth Performance, Nutrient Digestibility of Weaned Piglets and Growing-Finishing Pigs. J. Anim. Sci. Technol. 2021, 63, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; de Abreu, M.L.T.; Rodrigues, P.B.; de Oliveira, R.F.; et al. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 4th ed.; Federal University of Viçosa: Viçosa, Brazil, 2017; 482p. [Google Scholar]
- Liu, P.; Piao, X.S.; Thacker, P.A.; Zeng, Z.K.; Li, P.F.; Wang, D.; Kim, S.W. Chito-Oligosaccharide Reduces Diarrhea Incidence and Attenuates the Immune Response of Weaned Pigs Challenged with Escherichia Coli K88. J. Anim. Sci. 2010, 88, 3871–3879. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.M.; Jiang, Z.Y.; Zheng, C.T.; Wang, L.; Yang, X.F. Effect of Lactobacillus Plantarum on Diarrhea and Intestinal Barrier Function of Young Piglets Challenged with Enterotoxigenic Escherichia Coli K88. J. Anim. Sci. 2014, 92, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. The Combined Effect of Weaning Stress and Immune Activation during Pig Gestation on Serum Cytokine and Analyte Concentrations. Animals 2021, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Donkoh, A.; Moughan, P.J.; Smith, W.C. Comparison of the Slaughter Method and Simple T-Piece Cannulation of the Terminal Ileum for Determining Ileal Amino Acid Digestibility in Meat and Bone Meal for the Growing Pig. Anim. Feed Sci. Technol. 1994, 49, 43–56. [Google Scholar] [CrossRef]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.; Azevedo, J.A.G. Métodos Para Análise de Alimentos-INCT; Suprema Gráfica: Viçosa, MG, Brasil, 2012; 214p. [Google Scholar]
- White, J.A.; Hart, R.J.; Fry, J.C. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Anal. Methods Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hagen, S.R.; Frost, B.; Augustin, J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J. Assoc. Off. Anal. Chem. 1989, 72, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.; Sotelo, A. Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Anal. Biochem. 1980, 109, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Sakomura, N.K.; Rostagno, H.S. Métodos de Pesquisa em Nutrição de Monogástricos; Funep: Jaboticabal, Brasil, 2016; 262p. [Google Scholar]
- Adeola, O.; Xue, P.C.; Cowieson, A.J.; Ajuwon, K.M. Basal Endogenous Losses of Amino Acids in Protein Nutrition Research for Swine and Poultry. Anim. Feed Sci. Technol. 2016, 221, 274–283. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Wessels, A.; Corrent, E.; Wu, G.; Bosi, P. The Relevance of Functional Amino Acids to Support the Health of Growing Pigs. Anim. Feed Sci. Technol. 2018, 245, 104–116. [Google Scholar] [CrossRef]
- Yu, J.; Yu, G.; Yu, B.; Zhang, Y.; He, J.; Zheng, P.; Mao, X.; Luo, J.; Huang, Z.; Luo, Y.; et al. Dietary Protease Improves Growth Performance and Nutrient Digestibility in Weaned Piglets Fed Diets with Different Levels of Soybean Meal. Livest. Sci. 2020, 241, 104179. [Google Scholar] [CrossRef]
- Shili, C.N.; Broomhead, J.N.; Spring, S.C.; Lanahan, M.B.; Pezeshki, A. A Novel Corn-Expressed Phytase Improves Daily Weight Gain, Protein Efficiency Ratio and Nutrients Digestibility and Alters Fecal Microbiota in Pigs Fed with Very Low Protein Diets. Animals 2020, 10, 1926. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Choe, J.; Kang, J.; Cho, J.H.; Park, S.; Perez-Maldonado, R.; Cho, J.-Y.; Park, I.-H.; Kim, H.B.; Song, M. Dietary Protease Improves Growth Rate and Protein Digestibility of Growing-Finishing Pigs. J. Anim. Sci. Technol. 2020, 62, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Yu, H.T.; Zhou, J.Y.; Zeng, X.F.; Wang, G.; Cai, S.; Huang, S.; Zhu, Z.P.; Tan, J.J.; Johnston, L.J.; et al. Effects of Feeding Growing-Finishing Pigs with Low Crude Protein Diets on Growth Performance, Carcass Characteristics, Meat Quality and Nutrient Digestibility in Different Areas of China. Anim. Feed Sci. Technol. 2019, 256, 114256. [Google Scholar] [CrossRef]
- Pluske, J.R.; Turpin, D.L.; Kim, J.-C. Gastrointestinal Tract (Gut) Health in the Young Pig. Anim. Nutr. 2018, 4, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Kim, B.; Cho, J.H.; Kyoung, H.; Park, S.; Cho, J.-Y.; Park, K.I.; Kim, H.B.; Lee, J.J. Effects of Dietary Protease Supplementation on Growth Rate, Nutrient Digestibility, and Intestinal Morphology of Weaned Pigs. J. Anim. Sci. Technol. 2022, 64, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhou, Q.; Wu, C.; Zhao, J.; Tan, Q.; He, Y.; Hu, L.; Fang, Z.; Lin, Y.; Xu, S.; et al. Effects of dietary supplementation with essential oils and protease on growth performance, antioxidation, inflammation and intestinal function of weaned pigs. Anim. Nutr. 2022, 9, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, C.; Zou, H.; Li, B.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Yan, H.; Luo, J.; et al. Effects of Protease in Soybean Meal-Reduced Diets on Growth Performance, Nutrient Digestibility, and Intestinal Health of Weaned Piglets. Animals 2023, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Galli, G.M.; Levesque, C.L.; Cantarelli, V.S.; Chaves, R.F.; Silva, C.C.; Fascina, V.B.; Perez-Palencia, J.Y. Effect of Protease Supplementation on Amino Acid Digestibility of Soybean Meal Fed to Growing-Finishing Pigs in Two Different Ages. J. Anim. Sci. 2024, 102, skae345. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.; Cohen, B. An Overview of the Immune System. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Hennig-Pauka, I.; Menzel, A.; Boehme, T.R.; Schierbaum, H.; Ganter, M.; Schulz, J. Haptoglobin and C-Reactive Protein-Non-Specific Markers for Nursery Conditions in Swine. Front. Vet. Sci. 2019, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.-P.; Boudry, G.; Favier, C.; Le Floc’h, N.; Luron, I.; Montagne, L.; Oswald, I.P.; Pié, S.; Piel, C.; Sève, B. Gut Function and Dysfunction in Young Pigs: Physiology. Anim. Res. 2004, 53, 301–316. [Google Scholar] [CrossRef]
- Heo, J.-M.; Kim, J.-C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Effects of Feeding Low Protein Diets to Piglets on Plasma Urea Nitrogen, Faecal Ammonia Nitrogen, the Incidence of Diarrhoea and Performance after Weaning. Arch. Anim. Nutr. 2008, 62, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Htoo, J.K.; Araiza, B.A.; Sauer, W.C.; Rademacher, M.; Zhang, Y.; Cervantes, M.; Zijlstra, R.T. Effect of Dietary Protein Content on Ileal Amino Acid Digestibility, Growth Performance, and Formation of Microbial Metabolites in Ileal and Cecal Digesta of Early-Weaned Pigs. J. Anim. Sci. 2007, 85, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Tactacan, G.B.; Cho, S.-Y.; Cho, J.H.; Kim, I.H. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australas J. Anim. Sci. 2016, 29, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Shahir, M.H.; Rahimi, R.; Taheri, H.R.; Heidariniya, A.; Baradaran, N.; Asadi Kermani, Z. Effect of Protein Source and Protease Addition on Performance, Blood Metabolites and Nutrient Digestibility of Turkeys Fed on Low-Protein Diets from 28 to 55 d Post Hatch. Br. Poult. Sci. 2016, 57, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhao, P.F.; Yang, Z.Y.; Long, S.F.; Wang, H.L.; Tian, Q.Y.; Xu, Y.T.; Xu, X.; Zhang, Z.H.; Piao, X.S. Effects of Coated Compound Proteases on Apparent Total Tract Digestibility of Nutrients and Apparent Ileal Digestibility of Amino Acids for Pigs. Asian-Australas J. Anim. Sci. 2016, 29, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Mc Alpine, P.O.; O’Shea, C.J.; Varley, P.F.; O’Doherty, J.V. The Effect of Protease and Xylanase Enzymes on Growth Performance and Nutrient Digestibility in Finisher Pigs. J. Anim. Sci. 2012, 90 (Suppl. 4), 375–377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.G.; Yang, Z.B.; Wang, Y.; Yang, W.R.; Zhou, H.J. Effects of dietary supplementation of multi-enzyme on growth performance, nutrient digestibility, small intestinal digestive enzyme activities, and large intestinal selected microbiota in weanling pigs. J. Anim. Sci. 2014, 92, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
Feeding Phases | 21–32 Days | 32–42 Days | 42–63 Days | ||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients (g/kg) | PC 2 | NC1 | NC1.5 3 | PC | NC1 | NC1.5 | PC | NC1 | NC1.5 |
Corn, 7.88% | 468 | 489 | 500 | 544 | 567 | 578 | 628 | 650 | 662 |
Micronized soybean | 100 | 100 | 100 | 50 | 50 | 50 | --- | --- | --- |
Soybean meal, 45% | 170 | 148 | 137 | 240 | 218 | 207 | 300 | 278 | 267 |
Bovine plasma AP 920 | 40 | 40 | 40 | 20 | 20 | 20 | --- | --- | --- |
Milk serum, powder | 165 | 165 | 165 | 82 | 82 | 82 | --- | --- | --- |
Soybean oil | 10.0 | 10.0 | 10.0 | 22.7 | 22.3 | 21.9 | 28.9 | 28.3 | 28.0 |
Dicalcium phosphate | 7.50 | 7.70 | 7.70 | 9.00 | 9.10 | 9.20 | 10.60 | 10.70 | 10.80 |
Limestone | 6.60 | 6.70 | 6.80 | 7.00 | 7.10 | 7.20 | 9.60 | 9.70 | 9.70 |
Salt | 3.00 | 3.00 | 3.00 | 4.50 | 4.50 | 4.50 | 4.90 | 4.90 | 4.90 |
Vitamin and mineral premix 4 | 3.40 | 3.40 | 3.40 | 3.00 | 3.00 | 3.00 | 2.40 | 2.40 | 2.40 |
Lysine-HCl | 4.35 | 4.30 | 4.26 | 4.40 | 4.36 | 4.32 | 4.88 | 4.82 | 4.79 |
DL-Methionine | 2.21 | 2.20 | 2.19 | 1.89 | 1.88 | 1.86 | 1.84 | 1.82 | 1.81 |
L-Threonine | 2.23 | 2.18 | 2.15 | 2.18 | 2.13 | 2.10 | 2.07 | 2.01 | 1.99 |
L-Arginine | 2.45 | 2.35 | 2.30 | 1.50 | 1.45 | 1.40 | --- | --- | --- |
L-Isoleucine | 0.20 | 0.15 | 0.13 | --- | --- | --- | --- | --- | --- |
L-Tryptophan | 0.44 | 0.43 | 0.43 | 0.37 | 0.35 | 0.35 | 0.36 | 0.34 | 0.34 |
L-Valine | 0.81 | 0.74 | 0.71 | 0.68 | 0.29 | 0.57 | 0.77 | 0.69 | 0.66 |
Zinc oxide | 2.40 | 2.40 | 2.40 | 1.00 | 1.00 | 1.00 | --- | --- | --- |
Choline chloride, 60% | 0.88 | 0.88 | 0.88 | 0.82 | 0.82 | 0.82 | 0.76 | 0.76 | 0.76 |
Antioxidant | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Phytase | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Inert (Caulim) | 10.23 | 11.04 | 11.45 | 5.00 | 5.00 | 5.00 | 4.60 | 4.60 | 4.60 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Calculated nutritional value | |||||||||
Metabolizable energy, kcal/kg | 3400 | 3400 | 3400 | 3400 | 3400 | 3400 | 3350 | 3350 | 3350 |
Net energy, kcal/kg | 2577 | 2589 | 2594 | 2607 | 2618 | 2623 | 2597 | 2607 | 2613 |
Crude protein, % | 21.8 | 20.9 | 20.5 | 20.8 | 19.9 | 19.5 | 19.3 | 18.5 | 18.1 |
SID Lysine, % | 1.45 | 1.39 | 1.36 | 1.35 | 1.29 | 1.26 | 1.25 | 1.20 | 1.17 |
SID Methionine, % | 0.48 | 0.47 | 0.46 | 0.45 | 0.44 | 0.43 | 0.44 | 0.43 | 0.42 |
SID Met + Cis, % | 0.81 | 0.79 | 0.78 | 0.75 | 0.73 | 0.72 | 0.71 | 0.69 | 0.68 |
SID Threonine, % | 0.97 | 0.94 | 0.92 | 0.90 | 0.86 | 0.85 | 0.81 | 0.78 | 0.76 |
SID Tryptophan, % | 0.28 | 0.26 | 0.26 | 0.26 | 0.24 | 0.24 | 0.24 | 0.23 | 0.22 |
SID Arginine, % | 1.45 | 1.38 | 1.35 | 1.35 | 1.28 | 1.24 | 1.15 | 1.09 | 1.06 |
SID Valine, % | 1.00 | 0.96 | 0.94 | 0.93 | 0.86 | 0.86 | 0.86 | 0.82 | 0.80 |
SID Isoleucine, % | 0.80 | 0.76 | 0.74 | 0.76 | 0.72 | 0.70 | 0.71 | 0.68 | 0.66 |
SID Leucine, % | 1.66 | 1.61 | 1.59 | 1.58 | 1.53 | 1.50 | 1.47 | 1.42 | 1.40 |
Total Ca, % | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.88 | 0.88 | 0.88 |
Available P, % | 0.53 | 0.53 | 0.53 | 0.48 | 0.48 | 0.48 | 0.43 | 0.43 | 0.43 |
K, % | 0.98 | 0.95 | 0.93 | 0.87 | 0.84 | 0.82 | 0.75 | 0.72 | 0.70 |
Na, % | 0.35 | 0.35 | 0.35 | 0.30 | 0.30 | 0.30 | 0.21 | 0.21 | 0.21 |
Cl, % | 0.50 | 0.50 | 0.50 | 0.47 | 0.47 | 0.47 | 0.36 | 0.36 | 0.36 |
Gen | GenBank Code | Sequence |
---|---|---|
TNF-α | NM_214022.1 | F:5′CATCGCCGTCTCCTACCA3′ R:5′CCCAGATTCAGCAAAGTCCA3′ |
IL-1β | NM_214055.1 | F:5′TCTGCCCTGTACCCCAACTG3′ R:5′CCCAGGAAGACGGGCTTT3′ |
IL-6 | NM_001252429.1 | F:5′CCTGTCCACTGGGCACATAAC3′ R:5′CAAGAAACACCTGGCTCTGAAAC3′ |
Haptoglobin | NM_214000.2 | F:5′GCTAAGAATCTCCGCTTGG3′ R:5′CAATCTCCACCTCCTGTTTC3′ |
IL-10 | NM_214041.1 | F:5′GAAGGACCAGATGGGCGACTT3′ R:5′CACCTCCTCCACGGCCCTTG3′ |
TGF-β1 | NM_214015.1 | F:5′GGACCTTATCCTGAATGCCTT3′ R:5′TAGGTTACCACTGAGCCACAAT3′ |
OCL | NM_001163647.1 | F:5′TCCTGGGTGTGATGGTGTTC3′ R:5′CGTAGAGTCCAGTCACCGCA3′ |
ZO-1 | XM_003353439.2 | F:5′AAGCCCTAAGTTCAATCACAATCT 3R:5′ATCAAACTCAGGAGGCGGC3′ |
18S | AY_265350.1 | F: GGCTACCACATCCAAGGAAG |
R: TCCAATGGATCCTCGCGGAA |
Ingredients, % | Basal Diet | Basal Diet + Protease A | N-Free |
---|---|---|---|
Soybean meal | 30 | 30 | 0 |
Soybean oil | 5.00 | 5.00 | 4.00 |
Protease A 1 | - | 0.05 | - |
Sugar | 20 | 20 | 20 |
Starch | 36.58 | 36.53 | 67.58 |
Dicalcium phosphate | 1.96 | 1.96 | 1.96 |
Limestone | 0.76 | 0.76 | 0.76 |
Sodium chloride | 0.40 | 0.40 | 0.40 |
Vitamin supplement 2 | 0.12 | 0.12 | 0.12 |
Minerals supplement 3 | 0.12 | 0.12 | 0.12 |
Potassium carbonate | 0.40 | 0.40 | 0.40 |
Antioxidant | 0.01 | 0.01 | 0.01 |
Magnesium oxide | 0.10 | 0.10 | 0.10 |
Cellulose | 4.00 | 4.00 | 4.00 |
Choline chloride | 0.05 | 0.05 | 0.05 |
Titanium dioxide 4 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 |
Phase | PC | PC+A | NC1 | NC1.5 | NC1.5+A | NC1.5+B | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|---|
21 a 32 | ||||||||
ADG, g | 0.223 a | 0.225 a | 0.213 ab | 0.197 ab | 0.188 b | 0.189 b | 0.005 | 0.038 |
ADFI, g/d | 0.306 | 0.310 | 0.276 | 0.304 | 0.289 | 0.292 | 0.004 | 0.088 |
FCR | 1.397 b | 1.362 b | 1.437 ab | 1.544 ab | 1.591 a | 1.469 ab | 0.022 | 0.005 |
32 a 42 | ||||||||
ADG, g | 0.413 ab | 0.431 a | 0.415 ab | 0.414 ab | 0.385 b | 0.392 b | 0.005 | 0.043 |
ADFI, g/d | 0.588 | 0.592 | 0.610 | 0.589 | 0.567 | 0.570 | 0.006 | 0.314 |
FCR | 1.423 abc | 1.359 c | 1.391 abc | 1.386 bc | 1.460 ab | 1.477 a | 0.010 | 0.002 |
42 a 63 | ||||||||
ADG, g | 0.586 a | 0.580 a | 0.578 ab | 0.556 ab | 0.527 b | 0.542 ab | 0.006 | 0.011 |
ADFI, g/d | 0.929 a | 0.906 ab | 0.903 ab | 0.916 ab | 0.843 b | 0.843 b | 0.009 | 0.005 |
FCR | 1.587 ab | 1.534 b | 1.583 ab | 1.613 a | 1.612 a | 1.548 ab | 0.007 | 0.003 |
21 a 63 | ||||||||
ADG, g | 0.448 a | 0.455 a | 0.447 ab | 0.430 ab | 0.404 b | 0.406 ab | 0.005 | 0.004 |
ADFI, g | 0.685 a | 0.670 ab | 0.673 ab | 0.670 ab | 0.635 ab | 0.621 b | 0.007 | 0.026 |
FCR | 1.529 ab | 1.484 b | 1.510 ab | 1.548 a | 1.562 a | 1.521 ab | 0.007 | 0.006 |
Item | PC | PC+A | NC1 | NC1.5 | NC1.5+A | NC1.5+B SEM 2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Duodenum | ||||||||
Villus height, μm | 344.68 | 358.29 | 363.75 | 379.00 | 331.71 | 358.95 | 4.91 | 0.221 |
Crypt depth, μm | 401.64 | 384.35 | 381.39 | 384.51 | 390.18 | 386.54 | 5.19 | 0.905 |
VH:CD | 0.88 | 0.94 | 0.97 | 0.99 | 0.87 | 0.93 | 0.02 | 0.490 |
Jejunum | ||||||||
Villus height, μm | 336.50 | 390.74 | 358.59 | 335.79 | 331.71 | 375.01 | 9.34 | 0.371 |
Crypt depth, μm | 300.37 ab | 248.46 b | 289.01 ab | 299.80 ab | 305.00 a | 283.13 ab | 5.70 | 0.043 |
VH:CD | 1.16 ab | 1.61 a | 1.26 ab | 1.12 b | 1.09 b | 1.36 ab | 0.05 | 0.017 |
Ileum | ||||||||
Villus height, μm | 380.02 a | 376.33 ab | 368.42 ab | 338.91 ab | 323.30 ab | 308.50 b | 7.41 | 0.014 |
Crypt depth, μm | 241.94 | 221.87 | 243.78 | 242.20 | 223.35 | 234.44 | 4.96 | 0.656 |
VH:CD | 1.62 | 1.73 | 1.52 | 1.40 | 1.48 | 1.36 | 0.04 | 0.964 |
Item 2 | PC | PC+A | NC1 | NC1.5 | NC1.5+A | NC1.5+B | SEM 3 | p-Value |
---|---|---|---|---|---|---|---|---|
IL-1β | 4.074 | 3.597 | 5.057 | 4.244 | 5.073 | 4.883 | 0.183 | 0.0986 |
IL-6 | 1.935 ab | 1.735 b | 1.886 b | 2.076 ab | 2.452 ab | 2.681 a | 0.089 | 0.0061 |
IL-10 | 1.640 | 1.492 | 1.460 | 1.715 | 1.722 | 1.789 | 0.042 | 0.1381 |
TNF-α | 2.068 b | 2.018 b | 2.586 ab | 2.113 b | 2.434 ab | 2.843 a | 0.073 | 0.0021 |
Haptoglobin | 2.455 b | 2.450 b | 2.082 b | 2.633 b | 3.040 ab | 3.611 a | 0.103 | 0.0015 |
TGF-β1 | 2.164 | 2.082 | 2.408 | 2.157 | 2.361 | 2.506 | 0.055 | 0.1554 |
ZO-1 | 2.158 | 2.223 | 2.756 | 2.281 | 2.581 | 2.765 | 0.082 | 0.097 |
OCL | 1.750 | 1.755 | 1.968 | 1.858 | 2.049 | 2.239 | 0.062 | 0.1341 |
Item | Basal Diet | Basal Diet + Protease A | SEM 1 | p-Value |
---|---|---|---|---|
Crude protein, % | 83.45 | 82.04 | 0.5931 | 0.2480 |
Essential AA | ||||
Arginine, % | 93.43 | 93.72 | 0.2674 | 0.6120 |
Phenylalanine, % | 88.02 | 87.61 | 0.3568 | 0.5850 |
Histidine, % | 89.41 | 88.45 | 0.3928 | 0.2380 |
Isoleucine, % | 86.25 | 86.15 | 0.4429 | 0.9210 |
Leucine, % | 87.07 | 86.36 | 0.4085 | 0.4080 |
Lysine, % | 89.63 | 89.21 | 0.4741 | 0.6730 |
Methionine, % | 95.36 | 94.60 | 0.3643 | 0.3180 |
Met + Cys, % | 89.79 b | 94.52 a | 0.7544 | 0.0001 |
Threonine, % | 82.54 | 81.09 | 0.7106 | 0.3240 |
Tryptophan, % | 74.53 b | 81.90 a | 1.3195 | 0.0011 |
Valine, % | 83.63 | 82.64 | 0.5391 | 0.3800 |
Non-essential AA | ||||
Aspartic Acid, % | 85.31 | 84.49 | 0.3930 | 0.3210 |
Glutamic Acid, % | 88.43 | 88.02 | 0.3054 | 0.5200 |
Alanine, % | 80.48 | 79.94 | 0.7315 | 0.7270 |
Cysteine, % | 82.74 b | 93.52 a | 1.5490 | <0.0001 |
Glycine, % | 81.50 a | 77.98 b | 0.8682 | 0.0367 |
Proline, % | 90.97 a | 82.33 b | 1.6975 | 0.0048 |
Serine, % | 86.27 | 84.14 | 0.7002 | 0.1340 |
Tyrosine, % | 85.95 | 84.25 | 0.4899 | 0.0816 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlani, N.R.; Da Motta, S.A.B.; Ramos, B.T.; Fernandes, W.V.; de Freitas, M.R.S.; Riveros, R.; Tizziani, T.; Hannas, M.I. Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response. Animals 2025, 15, 2109. https://doi.org/10.3390/ani15142109
Furlani NR, Da Motta SAB, Ramos BT, Fernandes WV, de Freitas MRS, Riveros R, Tizziani T, Hannas MI. Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response. Animals. 2025; 15(14):2109. https://doi.org/10.3390/ani15142109
Chicago/Turabian StyleFurlani, Nathana Rudio, Stephane Alverina Briguente Da Motta, Bruno Teixeira Ramos, Wender Vieira Fernandes, Maria Rogervânia Silva de Freitas, Rony Riveros, Tarciso Tizziani, and Melissa Izabel Hannas. 2025. "Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response" Animals 15, no. 14: 2109. https://doi.org/10.3390/ani15142109
APA StyleFurlani, N. R., Da Motta, S. A. B., Ramos, B. T., Fernandes, W. V., de Freitas, M. R. S., Riveros, R., Tizziani, T., & Hannas, M. I. (2025). Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response. Animals, 15(14), 2109. https://doi.org/10.3390/ani15142109