From Bench to Piglet: A Comparison of In Vivo and In Vitro Effects of Phytogenics on Post-Weaning Diarrhea, Growth Performance, and Bacterial Behavior
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Test Compounds
2.2. Determination of Minimum Inhibitory Concentrations
2.3. Quorum Sensing Inhibition Assay (Chromobacterium violaceum)
2.4. Biofilm Inhibition Assay
2.5. In Vitro Mucus Adherence Assay
2.6. Animals, Diets, and In Vivo Trial Design
2.7. Piglet Growth Performance and Determination of Diarrhea Score
2.8. Statistical Analysis
3. Results
3.1. Effect of Selected Phytogenics on Bacterial Growth, Violacein Production, and Biofilm Formation
3.2. Effect of Carvacrol and Tea Tree Oil on Adhesion of F4-Fimbriated E. coli to Piglets’ Small Intestinal Mucus In Vitro
3.3. Effect of Phytogenic Prototypes on Piglet Growth Performance and Health Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADFI | Average daily feed intake |
ADG | Average daily gain |
AGP | Antimicrobial growth promoter |
BW | Body weight |
diH2O | Deionized H2O |
FCR | Feed conversion ratio |
ME | Metabolizable energy |
MIC | Minimum inhibitory concentration |
NC | Negative control |
PWD | Post-weaning diarrhea |
TSB | Trypto-casein soy broth |
ZnO | Zinc oxide |
References
- Casewell, M.; Friis, C.; Marco, E.; McMullin, P.; Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 2003, 52, 159–161. [Google Scholar] [CrossRef] [PubMed]
- No 1831/2003; Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. L 268/229. Official Journal of the European Union—European Commission: Brussels, Belgium, 2003.
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef] [PubMed]
- 2001/82/EC; Comission Implementing Decision of 26.6.2017 Concerning, in the Framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the Marketing Authorisations for Veterinary Medicinal Products Containing “Zinc Oxide” to Be Administered Orally to Food Producing Species. Official Journal of the European Union—European Commission: Brussels, Belgium, 2017.
- Langendijk, P.; Bolhuis, J.E.; Laurenssen, B.F.A. Effects of pre- and postnatal exposure to garlic and aniseed flavour on pre- and postweaning feed intake in pigs. Livest. Sci. 2007, 108, 284–287. [Google Scholar] [CrossRef]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview. Forsch. Komplementmed. 2009, 16, 79–90. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Moreira, M.R.; Ponce, A. Antiquorum Sensing and Antimicrobial Activity of Natural Agents with Potential Use in Food. J. Food Saf. 2012, 32, 379–387. [Google Scholar] [CrossRef]
- Burt, S.A.; Ojo-Fakunle, V.T.; Woertman, J.; Veldhuizen, E.J. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS ONE 2014, 9, e93414. [Google Scholar] [CrossRef]
- Reichling, J. Anti-biofilm and Virulence Factor-Reducing Activities of Essential Oils and Oil Components as a Possible Option for Bacterial Infection Control. Planta Med. 2020, 86, 520–537. [Google Scholar] [CrossRef]
- McClean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Camara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; et al. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997, 143 Pt 12, 3703–3711. [Google Scholar] [CrossRef]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef]
- Gonzalez Barrios, A.F.; Zuo, R.; Hashimoto, Y.; Yang, L.; Bentley, W.E.; Wood, T.K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 2006, 188, 305–316. [Google Scholar] [CrossRef]
- Yang, K.; Meng, J.; Huang, Y.C.; Ye, L.H.; Li, G.J.; Huang, J.; Chen, H.M. The role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by Escherichia coli. Cell Biochem. Biophys. 2014, 70, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Sturbelle, R.T.; de Avila, L.F.; Roos, T.B.; Borchardt, J.L.; da Conceicao Rde, C.; Dellagostin, O.A.; Leite, F.P. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet. Microbiol. 2015, 180, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 2013, 35, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Hançer Aydemir, D.; Çifci, G.; Aviyente, V.; Boşgelmez-Tinaz, G. Quorum-sensing inhibitor potential of trans-anethole aganist Pseudomonas aeruginosa. J. Appl. Microbiol. 2018, 125, 731–739. [Google Scholar] [CrossRef]
- Li, W.-R.; Ma, Y.-K.; Shi, Q.-S.; Xie, X.-B.; Sun, T.-L.; Peng, H.; Huang, X.-M. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa virulence factors by inactivating key quorum sensing genes. Appl. Microbiol. Biotechnol. 2018, 102, 7555–7564. [Google Scholar] [CrossRef]
- Ganesh, P.S.; Rai, R.V. Inhibition of quorum-sensing-controlled virulence factors of Pseudomonas aeruginosa by Murraya koenigii essential oil: A study in a Caenorhabditis elegans infectious model. J. Med. Microbiol. 2016, 65, 1528–1535. [Google Scholar] [CrossRef]
- Liu, W.; Lu, H.; Chu, X.; Lou, T.; Zhang, N.; Zhang, B.; Chu, W. Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microb. Pathog. 2020, 147, 104266. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.H.; Kim, J.A.; Neupane, G.P.; Cho, M.H.; Lee, C.S.; Lee, J. Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7. Biofouling 2011, 27, 1095–1104. [Google Scholar] [CrossRef]
- Vattem, D.A.; Mihalik, K.; Crixell, S.H.; McLean, R.J.C. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 2007, 78, 302–310. [Google Scholar] [CrossRef]
- Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. [Google Scholar] [CrossRef]
- MacArthur Clark, J. The 3Rs in research: A contemporary approach to replacement, reduction and refinement. Brit J. Nutr. 2018, 120, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Skogman, M.E.; Kanerva, S.; Manner, S.; Vuorela, P.M.; Fallarero, A. Flavones as Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium violaceum as Reporter Bacteria. Molecules 2016, 21, 1211. [Google Scholar] [CrossRef] [PubMed]
- Axmann, S.; Schorpp, A.; Strassgüttl, J.; Aumiller, T. Effects of phytogenic substances on growth and biofilm formation of and field isolates. Die Bodenkult. J. Land Manag. Food Environ. 2021, 72, 1–8. [Google Scholar] [CrossRef]
- Society of Nutrition Physiology. Recommendations for the Supply of Energy and Nutrients to Pigs; DLG-Verlags-GmbH, Frankfurt am Main: Frankfurt, Germany, 2006. [Google Scholar]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Liu, X.X.; Liu, R.; Zhao, R.T.; Wang, J.S.; Cheng, Y.Y.; Liu, Q.; Wang, Y.Y.; Yang, S.M. Synergistic Interaction Between Paired Combinations of Natural Antimicrobials Against Poultry-Borne Pathogens. Front. Microbiol. 2022, 13, 811784. [Google Scholar] [CrossRef]
- Ross, Z.M.; O’Gara, E.A.; Hill, D.J.; Sleightholme, H.V.; Maslin, D.J. Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria: Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef]
- Dussault, D.; Vu, K.D.; Lacroix, M. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Sci. 2014, 96, 514–520. [Google Scholar] [CrossRef]
- Noumi, E.; Ahmad, I.; Adnan, M.; Patel, H.; Merghni, A.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Kadri, A.; Caputo, L.; et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023, 28, 7691. [Google Scholar] [CrossRef]
- Bodini, S.F.; Manfredini, S.; Epp, M.; Valentini, S.; Santori, F. Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett. Appl. Microbiol. 2009, 49, 551–555. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; et al. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep.-Uk 2016, 6, 36761. [Google Scholar] [CrossRef]
- Khan, M.F.; Husain, F.M.; Zia, Q.; Ahmad, E.; Jamal, A.; Alaidarous, M.; Banawas, S.; Alam, M.M.; Alshehri, B.A.; Jameel, M.; et al. Anti-quorum Sensing and Anti-biofilm Activity of Zinc Oxide Nanospikes. ACS Omega 2020, 5, 32203–32215. [Google Scholar] [CrossRef] [PubMed]
- Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Lee, J.-H.; Gwon, G.; Kim, S.-I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep.-Uk 2016, 6, 36377. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Gong, X.; Wu, X.; Liu, L.; Chi, F. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro against Staphylococcus aureus and Escherichia coli. J. Food Prot. 2020, 83, 1261–1267. [Google Scholar] [CrossRef]
- Coddens, A.; Loos, M.; Vanrompay, D.; Remon, J.P.; Cox, E. Cranberry extract inhibits in vitro adhesion of F4 and F18(+) Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18(+) verotoxigenic E. coli. Vet. Microbiol. 2017, 202, 64–71. [Google Scholar] [CrossRef]
- Trunk, T.; Khalil, H.S.; Leo, J.C. Bacterial autoaggregation. Aims Microbiol. 2018, 4, 140–164. [Google Scholar] [CrossRef]
- Rutherford, D.; Jira, J.; Kolarova, K.; Matolinova, I.; Micova, J.; Remes, Z.; Rezek, B. Growth Inhibition of Gram-Positive and Gram-Negative Bacteria by Zinc Oxide Hedgehog Particles. Int. J. Nanomed. 2021, 16, 3541–3554. [Google Scholar] [CrossRef]
- Molist, F.; Hermes, R.G.; de Segura, A.G.; Martin-Orue, S.M.; Gasa, J.; Manzanilla, E.G.; Perez, J.F. Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Brit J. Nutr. 2011, 105, 1592–1600. [Google Scholar] [CrossRef]
- Eriksen, E.O.; Kudirkiene, E.; Christensen, A.E.; Agerlin, M.V.; Weber, N.R.; Nodtvedt, A.; Nielsen, J.P.; Hartmann, K.T.; Skade, L.; Larsen, L.E.; et al. Post-weaning diarrhea in pigs weaned without medicinal zinc: Risk factors, pathogen dynamics, and association to growth rate. Porc. Health Manag. 2021, 7, 54. [Google Scholar] [CrossRef]
- Carstensen, L.; Ersboll, A.K.; Jensen, K.H.; Nielsen, J.P. Escherichia coli post-weaning diarrhoea occurrence in piglets with monitored exposure to creep feed. Vet. Microbiol. 2005, 110, 113–123. [Google Scholar] [CrossRef]
- VinodhKumar, O.R.; Singh, B.R.; Sinha, D.K.; Pruthvishree, B.S.; Tamta, S.; Dubal, Z.B.; Karthikeyan, R.; Rupner, R.N.; Malik, Y.S. Risk factor analysis, antimicrobial resistance and pathotyping of Escherichia coli associated with pre- and post-weaning piglet diarrhoea in organised farms, India. Epidemiol. Infect. 2019, 147, e174. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Song, M.H.; Lee, J.H.; Oh, H.J.; Kim, Y.J.; An, J.W.; Go, Y.B.; Song, D.C.; Cho, H.A.; Cho, S.Y.; et al. Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. J. Anim. Sci. Biotechnol. 2022, 13, 107. [Google Scholar] [CrossRef]
- Tan, B.F.; Lim, T.; Boontiam, W. Effect of dietary supplementation with essential oils and a Bacillus probiotic on growth performance, diarrhoea and blood metabolites in weaned pigs. Anim. Prod. Sci. 2021, 61, 64–71. [Google Scholar] [CrossRef]
- Alberto, T.-P.; Keiner, A.; Le Gall, M.; Molist, F.; Guan, X.; Middelkoop, A.; Jiménez-Moreno, E.; Balfagón, A.; Mantovani, G.; Nofrarías, M.; et al. Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets. Stresses 2025, 5, 8. [Google Scholar] [CrossRef]
- Wei, H.K.; Xue, H.X.; Zhou, Z.X.; Peng, J. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal 2017, 11, 193–201. [Google Scholar] [CrossRef]
- Xu, Y.T.; Liu, L.; Long, S.F.; Pan, L.; Piao, X.S. Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim. Feed. Sci. Tech. 2018, 235, 110–119. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhang, Y.; Liu, L.; Huang, F.; Dong, B. Effects of Three-Layer Encapsulated Tea Tree Oil on Growth Performance, Antioxidant Capacity, and Intestinal Microbiota of Weaned Pigs. Front. Vet. Sci. 2021, 8, 789225. [Google Scholar] [CrossRef]
- Grilli, E.; Vitari, F.; Domeneghini, C.; Palmonari, A.; Tosi, G.; Fantinati, P.; Massi, P.; Piva, A. Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: From in vitro to in vivo, a proof of concept. J. Appl. Microbiol. 2013, 114, 308–317. [Google Scholar] [CrossRef]
- Kelly, C.; Gundogdu, O.; Pircalabioru, G.; Cean, A.; Scates, P.; Linton, M.; Pinkerton, L.; Magowan, E.; Stef, L.; Simiz, E.; et al. The In Vitro and In Vivo Effect of Carvacrol in Preventing Campylobacter Infection, Colonization and in Improving Productivity of Chicken Broilers. Foodborne Pathog. Dis. 2017, 14, 341–349. [Google Scholar] [CrossRef]
Starter Diets | Grower Diets | ||
---|---|---|---|
Ingredients | |||
Corn | % | 27.84 | 26.44 |
Soybean meal (CP: 49%) | % | 23.35 | 22.33 |
Barley | % | 17.54 | 29.60 |
Wheat | % | 12.91 | 13.70 |
Skim milk powder | % | 10.00 | - |
Soybean oil | % | 3.22 | 3.00 |
Limestone | % | 1.44 | 1.56 |
Premix (1) | % | 1.20 | 1.20 |
Monocalcium phosphate | % | 1.15 | 1.32 |
L-Lysine-HCL | % | 0.50 | 0.30 |
DL-Methionine | % | 0.20 | 0.10 |
L-Threonine | % | 0.18 | 0.02 |
L-Tryptophan | % | 0.07 | 0.03 |
Wheat bran | % | 0.10 | 0.10 |
Tixosil (2) | % | 0.30 | 0.30 |
Calculated analysis | |||
ME (3) | MJ/kg | 13.57 | 13.30 |
Crude protein | % | 20.65 | 17.61 |
Lys | % | 1.50 | 1.10 |
Met | % | 0.55 | 0.37 |
Met + Cys | % | 0.87 | 0.68 |
Thr | % | 0.96 | 0.67 |
Trp | % | 0.30 | 0.23 |
Crude fat | % | 5.37 | 5.26 |
Crude fiber | % | 3.47 | 4.12 |
Crude ash | % | 5.96 | 5.71 |
Calcium | % | 0.95 | 0.90 |
Available phosphorus | % | 0.44 | 0.40 |
Sodium | % | 0.22 | 0.20 |
Strain | C. violaceum | E. coli O88:H8 | E. coli O143:H4 | F4+ E. coli |
---|---|---|---|---|
Individual substance | ||||
Carvacrol | 150 | 300 | 600 | 160 |
Eugenol | 300 | 600 | 600 | nt |
Tea tree oil | 2500 | 10,000 | 10,000 | 2560 |
Garlic oil | 10,000 | >10,000 | >10,000 | nt |
Star anise oil | 5000 | >10,000 | >10,000 | nt |
Zinc oxide | >10,000 | >10,000 | >10,000 | nt |
Individual substance | ||||
PFA Core 1 | 2500 | 10,000 | >10,000 | nt |
PFA Core 2 | 150 | 300 | 300 | nt |
Treatment | NC | ZnO | PFA1 | PFA2 | SEM | p-Value |
---|---|---|---|---|---|---|
Treatment | ||||||
BW day 1 | 7.06 | 7.08 | 7.07 | 7.05 | 0.198 | 1.000 |
BW day 15 | 11.34 a | 12.37 c | 11.65 ab | 11.90 b | 0.098 | <0.0001 |
BW day 42 | 26.12 a | 28.52 c | 26.68 ab | 27.49 b | 0.228 | <0.0001 |
ADG day 1–14 | 306 a | 378 c | 327 ab | 345 b | 6.936 | <0.0001 |
ADG day 15–42 | 528 a | 577 c | 537 ab | 556 b | 6.012 | <0.0001 |
ADG day 1–42 | 454 a | 511 c | 467 ab | 486 b | 5.464 | <0.0001 |
ADFI day 1–14 | 356 a | 412 c | 367 ab | 381 b | 7.439 | <0.0001 |
ADFI day 15–42 | 750 a | 780 b | 746 a | 760 ab | 7.900 | 0.014 |
ADFI day 1–42 | 619 a | 657 b | 619 a | 633 a | 6.538 | <0.0001 |
FCR day 1–14 | 1.16 a | 1.09 c | 1.12 b | 1.10 bc | 0.008 | <0.0001 |
FCR day 15–42 | 1.42 a | 1.35 c | 1.39 b | 1.37 bc | 0.008 | <0.0001 |
FCR day 1–42 | 1.36 a | 1.29 c | 1.33 b | 1.30 bc | 0.007 | <0.0001 |
NC | ZnO | PFA 1 | PFA 2 | |
---|---|---|---|---|
Starter feeding period: day 1 to day 14 on trial | ||||
Probability of normal feces (1) | 0.422 a | 0.821 d | 0.579 b | 0.681 c |
95% Confidence Interval | [0.352, 0.495] | [0.765, 0.866] | [0.505, 0.649] | [0.611, 0.743] |
Grower feeding period: day 15 to day 42 on trial | ||||
Probability of normal feces (1) | 0.870 a | 0.983 b | 0.855 a | 0.898 a |
95% Confidence Interval | [0.832, 0.900] | [0.969, 0.991] | [0.814, 0.888] | [0.865, 0.924] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weitmann, A.; Axmann, S.; Männer, K.; Rinttilä, T.; Aumiller, T. From Bench to Piglet: A Comparison of In Vivo and In Vitro Effects of Phytogenics on Post-Weaning Diarrhea, Growth Performance, and Bacterial Behavior. Animals 2025, 15, 1661. https://doi.org/10.3390/ani15111661
Weitmann A, Axmann S, Männer K, Rinttilä T, Aumiller T. From Bench to Piglet: A Comparison of In Vivo and In Vitro Effects of Phytogenics on Post-Weaning Diarrhea, Growth Performance, and Bacterial Behavior. Animals. 2025; 15(11):1661. https://doi.org/10.3390/ani15111661
Chicago/Turabian StyleWeitmann, Anika, Sonja Axmann, Klaus Männer, Teemu Rinttilä, and Tobias Aumiller. 2025. "From Bench to Piglet: A Comparison of In Vivo and In Vitro Effects of Phytogenics on Post-Weaning Diarrhea, Growth Performance, and Bacterial Behavior" Animals 15, no. 11: 1661. https://doi.org/10.3390/ani15111661
APA StyleWeitmann, A., Axmann, S., Männer, K., Rinttilä, T., & Aumiller, T. (2025). From Bench to Piglet: A Comparison of In Vivo and In Vitro Effects of Phytogenics on Post-Weaning Diarrhea, Growth Performance, and Bacterial Behavior. Animals, 15(11), 1661. https://doi.org/10.3390/ani15111661