Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Diet and Management
2.2. Milk Sampling and Analysis
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Araújo, G.G.L.; Voltolini, T.V.; Chizzotti, M.L.; Turco, S.H.N.; De Carvalho, F.F.R. Water and small ruminant production. Rev. Bras. Zootec. 2010, 39, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Alamer, M. Effect of water restriction on lactation performance of Aardi goats under heat stress conditions. Small Rumin. Res. 2009, 84, 76–81. [Google Scholar] [CrossRef]
- De Moura, J.H.A.; De Araujo, G.G.L.; Saraiva, E.P.; De Albuquerque, Í.R.R.; Turco, S.H.N.; Costa, S.A.P.; Santos, N.M. Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels1. Semin. Agrar. 2016, 37, 1057–1068. [Google Scholar] [CrossRef]
- Companhia de Pesquisa de Recursos Minerais-CPRM Serviço Geológico do Brasil. Available online: http://www.cprm.gov.br/publique/Hidrologia/Eventos-Criticos-35 (accessed on 19 August 2020).
- Runyan, C.; Bader, J.; Mathis, C. Water Quality for Livestock and Poultry; Guide M-112 Las Cruces; New Mexico Cooperative Extension Service: Las Cruces, NM, USA, 2009. [Google Scholar]
- Lins, T.L.B.G.; Menezes, V.G.; Barberino, R.S.; Costa, S.A.P.; Santos, N.M.S.S.; Nascimento, T.V.C.; Queiroz, M.A.A.; Cordeiro, M.F.; Ribeiro, L.B.; Araujo, G.G.L.; et al. Sperm quality, and morphology and apoptosis of germinal epithelium cells of ram lambs receiving water of different salinities. Anim. Prod. Sci. 2018, 58, 1608. [Google Scholar] [CrossRef]
- Digby, S.N.; Blache, D.; Masters, D.G.; Revell, D.K. Responses to saline drinking water in offspring born to ewes fed high salt during pregnancy. Small Rumin. Res. 2010, 91, 87–92. [Google Scholar] [CrossRef]
- Ben Salem, H. Nutritional management to improve sheep and goat performances in semiarid regions. Rev. Bras. Zootec. 2010, 39, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Haenlein, G.F.W. About the evolution of goat and sheep milk production. Small Rumin. Res. 2007, 68, 3–6. [Google Scholar] [CrossRef]
- Ayers, R.; Wescot, D. Water Quality for Agriculture; Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; Volume 29, ISBN 92-5-102263-1. [Google Scholar]
- Cardoso, E.D.A.; Furtado, D.A.; Ribeiro, N.L.; Saraiva, E.P.; do Nascimento, J.W.B.; de Medeiros, A.N.; de Sousa, F.A.; Borba Pereira, P.H. Intake salinity water by creole goats in a controlled environment: Ingestive behavior and physiological variables. Trop. Anim. Health Prod. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Valadares Filho, S.; Magalhães, K.; Rocha Júnior, V.; Capelle, E. Tabelas Brasileiras de Composição de Alimentos Para Bovinos, 2nd ed.; UFV: Viçosa, Brazil, 2006. [Google Scholar]
- Moreira, J.N.; Lira, M.D.A.; Dos Santos, M.V.F.; Ferreira, M.D.A.; De Araújo, G.G.L.; Ferreira, R.L.C.; Da Silva, G.C. Characterization of Caatinga vegetation and diet of steers in the “Sertão” of Pernambuco—Brazil. Pesqui. Agropecu. Bras. 2006, 41, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Marwick, G. Water Requirements for Sheep and Cattle. Available online: https://www.dpi.nsw.gov.au/climate-and-emergencies/droughthub/information-and-resources/water-requirements-sheep-cattle (accessed on 19 August 2020).
- Laurenti, A. Qualidade de Agua I, 1st ed.; Imprensa Universitária UFSC: Florianópolis, Brazil, 1997. [Google Scholar]
- Vogel, A. Analise Quimica Quantitativa, 5th ed.; Embrapa Gado de Leite (CNPGL): Rio de Janeiro, Brazil, 1992. [Google Scholar]
- AOAC Official. Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Rangana, S. Manual of Analysis of Fruit and Vegetable Products, 1st ed.; Tata McGraw-Hill: New Delhi, India, 1979. [Google Scholar]
- Stone, H.; Sidel, J. Sensory Evaluation Practices, 3rd ed.; Academic Press: Cambridge, MA, USA, 2004; ISBN 9780080474359. [Google Scholar]
- Noronha, J.F. Apontamentos de Análise Sensorial; Escola Superior Agrária de Coimbra: Coimbra, Portugal, 2003. [Google Scholar]
- Mpendulo, C.T.; Chimonyo, M.; Zindove, T.J. Influence of water restriction and salinity on feed intake and growth performance of Nguni does. Small Rumin. Res. 2017, 149, 112–114. [Google Scholar] [CrossRef]
- Mdletshe, Z.M.; Chimonyo, M.; Marufu, M.C.; Nsahlai, I.V. Effects of saline water consumption on physiological responses in Nguni goats. Small Rumin. Res. 2017, 153, 209–211. [Google Scholar] [CrossRef]
- Paiva, G.N.; De Araújo, G.G.L.; Henriques, L.T.; Medeiros, A.N.; Filho, E.M.B.; Costa, R.G.; De Albuquerque, Í.R.R.; Gois, G.C.; Campos, F.S.; Freire, R.M.B. Water with different salinity levels for lactating goats. Semin. Agrar. 2017, 38, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Elgharbi, M.W.; Abidi, S.; Salem, H. Ben Effects of water Salinity on milk Production and Several blood constituents of Barbarine Sheep in a Semi arid Climate. Int. Res. J. Earth Sci. 2015, 3, 1–4. [Google Scholar]
- Thomas, D.T.; Rintoul, A.J.; Masters, D.G. Sheep select combinations of high and low sodium chloride, energy and crude protein feed that improve their diet. Appl. Anim. Behav. Sci. 2007, 105, 140–153. [Google Scholar] [CrossRef]
- Pereira, G.F.; Araujo, G.G.L.; Medeiros, A.N.; Lima, G.F.C.; Gracindo, A.P.A.; Lima Junior, V.; Fernandes Junior, F.C.; Candido, E.P. Consumo e digestibilidade do feno de flor-de-seda em dietas para cabras leiteiras. Rev. Bras. Saúde Produção Anim. 2010, 11, 79–90. [Google Scholar]
- Wilson, A.D. The tolerance of sheep to sodium chloride in food or drinking water. Aust. J. Agric. Res. 1966, 17, 503–514. [Google Scholar] [CrossRef]
- Wilson, A.D.; Hindley, N.L. Effect of restricted access to water on the intake of salty foods by merino and border leicester sheep. Aust. J. Agric. Res. 1968, 19, 597–604. [Google Scholar] [CrossRef]
- Masters, D.G.; Rintoul, A.J.; Dynes, R.A.; Pearce, K.L.; Norman, H.C. Feed intake and production in sheep fed diets high in sodium and potassium. Aust. J. Agric. Res. 2005, 56, 427–434. [Google Scholar] [CrossRef]
- Blache, D.; Grandison, M.J.; Masters, D.G.; Dynes, R.A.; Blackberry, M.A.; Martin, G.B. Relationships between metabolic endocrine systems and voluntary feed intake in Merino sheep fed a high salt diet. Aust. J. Exp. Agric. 2007, 47, 544–550. [Google Scholar] [CrossRef]
- Peirce, A.W. Studies on salt tolerance of sheep i. The tolerance of sheep for sodium chloride in the drinking water. Aust. J. Agric. Res. 1957, 8, 711–722. [Google Scholar] [CrossRef]
- Alves, J.N.; Araújo, G.G.L.; Neto, S.G.; Voltolini, T.V.; Santos, R.D.; Rosa, P.R.; Guan, L.; McAllister, T.; Neves, A.L.A. Effect of increasing concentrations of total dissolved salts in drinking water on digestion, performance and water balance in heifers. J. Agric. Sci. 2017, 155, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-J.; Lewis, M.J.; Grandison, A.S. Measurement of ionic calcium in milk. Int. J. Dairy Technol. 2006, 59, 192–199. [Google Scholar] [CrossRef]
- Revelli, G.R.; Sbodio, O.A.; Tercero, E.J.; Uberti, M. Impacto de la Calidad de Agua para Bebida Animal en Relación a Parámetros Productivos, Composicionales y Reproductivos. FAVE Secc. Cienc. Vet. 2002, 1, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.M.; Drunkler, D.A.; Bordignon Luiz, M.T.; Fett, R.; Szpoganicz, B. The influence of β-cyclodextrin on goaty flavor—Characterization of synthetic inclusion complexes with capric acid and caprylicacid. Br. Food J. 2001, 103, 281–290. [Google Scholar] [CrossRef]
- Muniz, A.J.C.; Gonzaga, S.; Henriques, L.T.; Costa, R.G.; Queiroga, R.d.C.R.d.E.; Saraiva, C.A.S.; Souza, C.G.d.; Ribeiro, N.L. Effect of increasing tannic acid addition to the diet on milk quality in the semiarid region. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
Ingredient | Buffel-Grass Hay | Ground Corn | Soybean Meal | Total Diet |
---|---|---|---|---|
Dry matter (DM) | 92.40 | 89.08 | 88.99 | 90.95 |
Organic matter (OM) | 94.43 | 98.60 | 98.41 | 94.51 |
Mineral matter (MM) | 5.57 | 1.40 | 1.59 | 5.47 |
Crude protein (CP) | 6.47 | 10.31 | 49.04 | 13.98 |
Ether extract (EE) | 1.94 | 6.17 | 2.21 | 3.34 |
NDFap | 76.69 | 17.81 | 22.72 | 47.63 |
ADFap | 49.69 | 4.66 | 10.76 | 27.99 |
Lignin | 9.98 | 1.97 | 4.49 | 6.31 |
Cellulose | 25.03 | 3.39 | 4.44 | 14.30 |
Hemicellulose | 23.79 | 12.45 | 11.90 | 17.78 |
Total carbohydrates | 86.02 | 82.12 | 47.16 | 77.18 |
NFCap | 9.38 | 64.31 | 24.44 | 29.55 |
ADIP | 0.96 | 0.94 | 1.36 | 0.99 |
Total digestible nutrients (TDN) | 32.25 * | 85.00 ** | 82.00 ** | 56.70 |
Variables | Total Dissolved Solids in the Water (mg L−1) | |||
---|---|---|---|---|
640 | 3188 | 5740 | 8326 | |
Conductivity (ds m−1) | 1.00 | 4.98 | 8.97 | 13.01 |
Sodium (mg L−1) | 253.0 | 1030 | 1840 | 3680 |
Chlorine (mg L−1) | 632.8 | 1350 | 2800 | 4150 |
Calcium (mg L−1) | 11.60 | 13.20 | 14.80 | 18.80 |
Magnesium (mg L−1) | 26.40 | 17.16 | 11.04 | 10.32 |
Potassium (mg L−1) | 5.86 | 5.47 | 3.13 | 5.87 |
Alkalinity (mg L−1) | 13.80 | 14.20 | 14.60 | 24.50 |
Descriptor | Definition |
---|---|
Flavor | Mixed experience of olfactory, gustatory and tactile sensations perceived during tasting. Flavor slightly bitter with buttery perception |
Odor | Organoleptic property perceived by olfactory organ when certain volatile substances are smelled |
Overall appearance a | Sum of the quality attributes that will contribute to determining the degree of product acceptance by panelists |
Aftertaste | Salty aftertaste remaining after ingestion of the product |
Variable | Total Dissolved Solids in the Water (mg L−1) | RMSE 1 | Significance | ||||
---|---|---|---|---|---|---|---|
640 | 3188 | 5740 | 8326 | Lin 2 | Quad 3 | ||
Milk yield (g day−¹) | 1.79 | 1.85 | 1.76 | 1.86 | 0.18 | 0.582 | 0.902 |
WIB (kg day−1) | 6.08 | 6.98 | 7.82 | 9.11 | 1.33 | 0.001 | 0.725 |
TDE (%) | 10.40 | 10.46 | 9.98 | 10.20 | 0.60 | 0.277 | 0.180 |
DDE (%) | 7.68 | 7.81 | 7.46 | 7.66 | 0.42 | 0.792 | 0.346 |
Moisture | 89.60 | 89.54 | 90.02 | 89.80 | 0.60 | 0.277 | 0.180 |
Ash (%) | 0.73 * | 0.76 | 0.68 | 0.72 | 0.08 | 0.548 | 0.112 |
Fat (%) | 2.72 | 2.65 | 2.51 | 2.54 | 0.34 | 0.098 | 0.209 |
Protein (%) | 3.45 * | 3.67 | 3.15 | 3.49 | 0.31 | 0.916 | 0.146 |
Lactose | 4.75 | 4.70 | 4.75 | 4.54 | 0.27 | 0.215 | 0.064 |
Acidity | 0.12 * | 0.14 | 0.13 | 0.14 | 0.02 | 0.024 | 0.321 |
Density (g/cm3) | 1031.10 | 1031.70 | 1031.00 | 1031.30 | 1.01 | 0.529 | 0.325 |
Variable | Total Dissolved Solids in the Water (mg L−1) | RMSE ¹ | Significance | ||||
---|---|---|---|---|---|---|---|
640 | 3188 | 5740 | 8326 | Lin 2 | Quad 3 | ||
Phosphorous | 104.47 | 103.90 | 102.86 | 111.77 | 18.48 | 0.285 | 0.279 |
Chlorine | 245.18 | 256.68 | 251.37 | 248.27 | 12.99 | 0.622 | 0.062 |
Calcium | 129.41 | 130.32 | 133.39 | 123.61 | 15.42 | 0.382 | 0.145 |
Sodium | 158.86 | 164.43 | 162.77 | 160.62 | 8.50 | 0.698 | 0.057 |
Potassium | 234.28 | 235.55 | 239.46 | 231.65 | 31.51 | 0.902 | 0.539 |
Variable | Total Dissolved Solids in the Water (mg L−1) | RMSE ¹ | Significance | ||||
---|---|---|---|---|---|---|---|
640 | 3188 | 5740 | 8326 | Lin 2 | Quad 3 | ||
Odor | |||||||
Overall intensity | 2.39 | 2.12 | 2.27 | 2.30 | 1.26 | 0.519 | 0.560 |
Goat milk | 2.27 | 1.85 | 2.00 | 2.06 | 1.25 | 0.224 | 0.494 |
Butter/rancid | 1.91 | 1.61 | 1.73 | 1.73 | 0.96 | 0.247 | 0.613 |
Aromatic | 2.12 | 1.73 | 1.91 | 2.00 | 1.19 | 0.307 | 0.355 |
Flavor | |||||||
Overall intensity | 2.85 | 2.73 | 2.58 | 2.52 | 1.14 | 0.289 | 0.444 |
Goat Milk | 2.76 | 3.09 | 2.64 | 2.55 | 1.27 | 0.991 | 0.083 |
Butter/rancid | 2.36 | 2.15 | 2.30 | 2.03 | 1.00 | 0.320 | 0.620 |
Aromatic | 2.42 | 2.48 | 2.39 | 2.15 | 1.21 | 0.746 | 0.264 |
Aftertaste | |||||||
Intensity | 2.55 | 2.85 | 2.52 | 2.30 | 1.20 | 0.957 | 0.066 |
Persistence | 2.33 | 2.58 | 2.48 | 2.15 | 1.22 | 0.766 | 0.159 |
Global Appearance | 3.06 | 3.37 | 3.18 | 3.48 | 0.95 | 0.144 | 0.607 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, R.G.; Freire, R.M.B.; de Araújo, G.G.L.; Queiroga, R.d.C.R.d.E.; Paiva, G.N.; Ribeiro, N.L.; Oliveira, R.L.; Domínguez, R.; Lorenzo, J.M. Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk. Animals 2021, 11, 2642. https://doi.org/10.3390/ani11092642
Costa RG, Freire RMB, de Araújo GGL, Queiroga RdCRdE, Paiva GN, Ribeiro NL, Oliveira RL, Domínguez R, Lorenzo JM. Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk. Animals. 2021; 11(9):2642. https://doi.org/10.3390/ani11092642
Chicago/Turabian StyleCosta, Roberto Germano, Rayssa M. Bezerril Freire, Gherman Garcia Leal de Araújo, Rita de Cássia Ramos do Egypto Queiroga, Gutemberg Nascimento Paiva, Neila Lidiany Ribeiro, Ronaldo Lopes Oliveira, Rubén Domínguez, and José M. Lorenzo. 2021. "Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk" Animals 11, no. 9: 2642. https://doi.org/10.3390/ani11092642
APA StyleCosta, R. G., Freire, R. M. B., de Araújo, G. G. L., Queiroga, R. d. C. R. d. E., Paiva, G. N., Ribeiro, N. L., Oliveira, R. L., Domínguez, R., & Lorenzo, J. M. (2021). Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk. Animals, 11(9), 2642. https://doi.org/10.3390/ani11092642