Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets, Animals, and Experimental Procedure
2.2. Slaughter Measurements and Sampling
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- González, J.; Sánchez, L.; Alvir, M.R. Estimation of intestinal digestibility of undegraded sunflower meal protein from nylon bag measurements. A mathematical model. Reprod. Nutr. Dev. 1999, 39, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lessire, M.; Lebas, F. Sunflower Meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. 2019. Available online: https://feedipedia.org/node/732 (accessed on 26 January 2019).
- Vanegas, J.L.; Carro, M.D.; Alvir, M.R.; González, J. Protection of sunflower seed and sunflower meal protein with malic acid and heat: Effects on in vitro ruminal fermentation and methane production. J. Sci. Food Agric. 2017, 97, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, J.L.; González, J.; Alvir, M.R.; Carro, M.D. Influence of malic acid–heat treatment for protecting sunflower protein against ruminal degradation on in vitro methane production: A comparison with the use of malic acid as an additive. Anim. Feed Sci. Technol. 2017, 228, 123–131. [Google Scholar] [CrossRef]
- Haro, A.N. Control of Protein Degradation in the Rumen for Improving Protein Efficiency and Reducing Polluting Emissions. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2019. [Google Scholar]
- Majewska, M.P.; Pająk, J.J.; Skomia, J.; Kowalik, B. The effect of different forms of sunflower products in diets for lambs and storage time on meat quality. Anim. Feed Sci. Technol. 2016, 222, 227–235. [Google Scholar] [CrossRef]
- Haro, A.; González, J.; de Evan, T.; de la Fuente, J.; Carro, M.D. Effects of feeding rumen-protected sunflower seed and meal protein on feed intake, diet digestibility, ruminal, cecal fermentation, and growth performance of lambs. Animals 2019, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Cañeque, V.; Pérez, C.; Velasco, S.; Díaz, M.T.; Lauzurica, S.; Alvarez, I.; Ruiz de Huidobro, F.; Onega, E.; De la Fuente, J. Carcass and meat quality of light lambs using principal component analysis. Meat Sci. 2004, 67, 595–605. [Google Scholar] [CrossRef]
- Velasco, S.; Lauzurica, S.; Cañeque, V.; Pérez, C.; Huidobro, F.; Manzanares, C.; Díaz, M.T. Carcass and meat quality of Talaverana breed sucking lambs in relation to gender and slaughter weight. Anim. Sci. 2000, 70, 253–263. [Google Scholar] [CrossRef]
- EEC (Comission Regulation). No 461/93 of 26 February 1993 laying down detailed rules for the community scale for the classification of carcases of ovine animals. Off. J. Eur. Union 1993, 4, 70. [Google Scholar]
- De la Fuente-Vázquez, J.; Díaz-Chirón, M.T.; Pérez-Marcos, C.; Cañeque-Martínez, V.C.; Sánchez-González, I.; Álvarez-Acero, I.; Fernández-Bermejo, C.; Rivas-Cañedo, A.; Lauzurica, S. Linseed, microalgae or fish oil dietary supplementation affects performance and quality characteristics of light lambs. Span. J. Agric. Res. 2014, 12, 436–447. [Google Scholar] [CrossRef]
- Colomer-Rocher, F.; Delfa, R.; Sierra, I. Método normalizado para el estudio de los caracteres cuantitativos y cualitativos de las canales ovinas producidas en el área mediterránea según los sistemas de producción. Cuad. INIA 1988, 17, 19–41. [Google Scholar]
- Commisision Internationale d L’Eclairage (CIE). Technical Report: Colorimetry, 3rd ed.; CIE: Vienna, Austria, 2004. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache methode zur bestimmung de wasserbindung in muskel. Naturwissenschaften 1953, 40, 29–30. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lee, M.R.F.; Tweed, J.K.S.; Kim, E.J.; Scollan, N.D. Beef, chicken and lamb fatty acid analysis—A simplified direct bimethylation procedure using freeze-dried material. Meat Sci. 2012, 92, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Muíño, I.; Apeleo, E.; de la Fuente, J.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Díaz, M.T.; Cañeque, V.; Lauzurica, S. Effect of dietary supplementation with red wine extract or vitamin E, in combination with linseed and fish oil, on lamb meat quality. Meat Sci. 2014, 98, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide, Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Sañudo, C.; Campo, M.M.; Sierra, I.; María, G.A.; Olleta, L.J.; Santolaria, P. Breed effect on carcase and meat quality of suckling lambs. Meat Sci. 1997, 46, 357–365. [Google Scholar] [CrossRef]
- Alcalde, M.J.; Sañudo, C.; Osorio, J.C.; Olleta, J.L.; Sierra, I. Evaluación de la calidad de la canal y de la carne en canales ovinas ligeras del tipo comercial “Ternasco” (Evaluation of carcass and meat quality in light ovine carcasses of the “ternasco” comercial type). ITEA 1999, 95, 49–64. [Google Scholar]
- Peña, F.; Cano, T.; Domenech, V.; Alcalde, M.J.; Martos, J.; García-Martínez, A.; Herrera, M.; Rodero, E. Influence of sex, slaughter weight and carcass weight on “non-carcass” and carcass quality in Segureña lambs. Small Rum. Res. 2005, 60, 247–254. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McClelland, L.A.; Jones, S.D.M.; Kozub, G.C. Effects of crude protein content, protein degradability and energy concentration of the diet on growth and carcass characteristics of market lambs fed high concentrate diets. J. Anim. Sci. 1995, 75, 387–395. [Google Scholar] [CrossRef]
- Díaz-Royón, F.; Arroyo, J.M.; Alvir, M.R.; Sánchez, S.; González, J. Short communication. Effects of protein protection with orthophosphoric or malic acids and heat on fattening lamb diets. Small Rum. Res. 2016, 134, 58–61. [Google Scholar] [CrossRef]
- Vergara, H.; Fernández, C.; Gallego, L. Efecto del genotipo (Manchego, Merino, Ile de France x Merino) sobre la calidad de la canal de corderos. Invest. Agr. Prod. Sanid. Anim. 1999, 14, 5–13. [Google Scholar]
- Cornforth, D. Quality Attributes and Their Measurement in Meat, Poultry and Fish Products: Color, its Basis and Importance; Pearson, A.M., Dutson, T.R., Eds.; Springer: New York, NY, USA, 1999; pp. 34–78. [Google Scholar]
- Juárez, M.M.; Horcada, A.; Alcalde, M.J.; Valera, M.; Polvillo, O.; Molina, A. Meat and fat quality of unweaned lambs as affected by slaughter weight and breed. Meat. Sci. 2009, 83, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavor: A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Calnan, H.B.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Factors affecting the colour of lamb meat from the longissimus muscle during display: The influence of muscle weight and muscle oxidative capacity. Meat. Sci. 2014, 96, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, C.; Enser, M.E.; Campo, M.M.; Nute, G.R.; María, G.; Sierra, I.; Wood, J.D. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- De Almeida, F.A.; Da Silva Sobrinho, A.G.; Manzi, G.M.; Lima, N.L.L.; Endo, V.; Zeola, N.M.B.L. Dietary supplementation with sunflower seeds and vitamin E for fattening lambs improves the fatty acid profile and oxidative stability of the Longissimus lumborum. Anim. Prod. Sci. 2015, 55, 1030–1036. [Google Scholar] [CrossRef]
- Budimir, K.; Trombetta, M.F.; Francioni, M.; Toderi, M.; D’Ottavio, P. Slaughter performance and carcass and meat quality of Bergamasca light lambs according to slaughter age. Small Rum. Res. 2018, 164, 1–7. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Aurousseau, B.; Bauchart, D.; Calichon, E.; Micol, D.; Priolo, A. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. 2004, 66, 531–541. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.G.; Hewett, B.; Fursey, G.A.J.; Wood, J.D.; Harrington, G. Fatty acid content and composition of uk beef and lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 1998, 49, 332–341. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Mendes, I.A. The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. Meat. Sci. 2003, 65, 1301–1308. [Google Scholar] [CrossRef]
- Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy. Sci. 2009, 92, 4456–4466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food. Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Sci. 2017, 123, 166–172. [Google Scholar] [CrossRef]
Item | Concentrate | SEM 1 | p = | |
---|---|---|---|---|
Control | MAH | |||
Cooling losses (%) | 2.63 | 2.43 | 0.172 | 0.590 |
Carcass conformation (cm) 2 | ||||
CWD | 19.3 | 19.3 | 0.34 | 0.973 |
CTD | 20.9 | 22.0 | 0.48 | 0.134 |
BUW | 53.8 | 54.1 | 0.54 | 0.634 |
HLL | 22.3 | 22.1 | 0.35 | 0.693 |
RP | 16.2 | 16.1 | 0.31 | 0.764 |
ICL | 54.3 | 55.2 | 0.61 | 0.319 |
Carcass compactness | 0.23 | 0.23 | 0.003 | 0.508 |
Buttock/leg index | 2.42 | 2.46 | 0.056 | 0.550 |
Dorsal fat thickness (cm) | 1.82 | 2.43 | 0.164 | 0.016 |
Carcass fatness 3 | 2.22 | 2.25 | 0.160 | 0.906 |
Pelvic-kidney fat 3 | 1.83 | 2.12 | 0.159 | 0.200 |
Metacarpus weight (g) | 42.4 | 43.6 | 2.390 | 0.791 |
Metacarpus length (cm) | 12.0 | 12.2 | 0.139 | 0.407 |
Item | Concentrate | |||
---|---|---|---|---|
Control | MAH | SEM 1 | p = | |
pH | ||||
Longissimus | ||||
0 h | 6.76 | 6.77 | 0.043 | 0.945 |
24 h | 5.68 | 5.64 | 0.033 | 0.365 |
Semitendinosus | ||||
0 h | 6.59 | 6.44 | 0.067 | 0.130 |
24 h | 5.77 | 5.75 | 0.044 | 0.743 |
Color | ||||
Subcutaneous fat (tail root) | ||||
Lightness (L*) | 64.4 | 63.0 | 1.66 | 0.554 |
Redness (a*) | 1.80 | 3.36 | 0.656 | 0.107 |
Yellowness (b*) | 11.9 | 12.0 | 0.99 | 0.933 |
Chromaticity (C*) | 12.0 | 12.8 | 0.97 | 0.590 |
Hue* (H*) | 67.5 | 60.1 | 13.6 | 0.703 |
Rectus abdominis | ||||
Lightness (L*) | 44.1 | 42.7 | 1.27 | 0.448 |
Redness (a*) | 7.39 | 10.4 | 0.739 | 0.010 |
Yellowness (b*) | 5.66 | 8.26 | 0.930 | 0.061 |
Chromaticity (C*) | 9.62 | 13.4 | 1.01 | 0.016 |
Hue* (H*) | 35.5 | 37.3 | 3.65 | 0.724 |
Longissimus | ||||
Lightness (L*) | 38.5 | 36.6 | 1.48 | 0.385 |
Redness (a*) | 8.60 | 10.2 | 0.77 | 0.147 |
Yellowness (b*) | 12.4 | 13.3 | 0.43 | 0.144 |
Chromaticity (C*) | 15.2 | 16.9 | 0.75 | 0.123 |
Hue* (H*) | 55.8 | 53.1 | 1.65 | 0.264 |
Item | Concentrate | |||
---|---|---|---|---|
Control | MAH | SEM 1 | p = | |
Water holding capacity (%) | 66.8 | 67.8 | 1.00 | 0.506 |
Chemical composition (%) | ||||
Moisture | 75.5 | 74.9 | 0.49 | 0.474 |
Protein | 20.1 | 20.6 | 0.30 | 0.327 |
Fat | 2.80 | 3.09 | 0.508 | 0.690 |
Ash | 1.06 | 1.09 | 0.026 | 0.516 |
Item | Concentrate | |||
---|---|---|---|---|
Control | MAH | SEM 1 | p = | |
Fatty acid (% of total fatty acids) | ||||
C10:0 | 0.10 | 0.10 | 0.009 | 0.781 |
C12:0 | 0.26 | 0.35 | 0.037 | 0.117 |
C14:0 | 3.23 | 3.60 | 0.129 | 0.055 |
C15:0 | 0.51 | 0.51 | 0.021 | 0.940 |
C16:0 | 21.5 | 21.2 | 0.34 | 0.553 |
C17:0 | 1.50 | 1.43 | 0.056 | 0.380 |
C18:0 | 8.18 | 9.09 | 0.460 | 0.177 |
C20:0 | 0.07 | 0.08 | 0.004 | 0.455 |
Total saturated FA | 35.3 | 36.3 | 0.52 | 0.181 |
C14:1 | 0.15 | 0.15 | 0.010 | 0.763 |
C16:1 | 2.02 | 1.96 | 0.081 | 0.623 |
C17:1 | 0.92 | 0.87 | 0.044 | 0.430 |
C18:1 | 42.2 | 41.2 | 0.84 | 0.431 |
Total monounsaturated FA 2 | 45.3 | 44.2 | 0.89 | 0.410 |
C18:2 n-6 | 14.3 | 14.3 | 0.68 | 0.940 |
C18:3 n-3 | 0.15 | 0.16 | 0.008 | 0.808 |
C20:3 n-6 | 0.17 | 0.19 | 0.013 | 0.211 |
C20:4 n-6 | 4.35 | 4.29 | 0.245 | 0.780 |
C20:5 n-3 | 0.06 | 0.06 | 0.007 | 0.780 |
C22:5 n-3 | 0.29 | 0.31 | 0.023 | 0.570 |
C22:6 n-3 | 0.11 | 0.13 | 0.020 | 0.406 |
Total polyunsaturated FA | 19.4 | 19.4 | 0.86 | 0.970 |
n-6 | 18.8 | 18.8 | 0.85 | 0.998 |
n-3 | 0.61 | 0.66 | 0.044 | 0.442 |
n-6/n-3 | 31.4 | 29.9 | 1.88 | 0.563 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haro, A.; de Evan, T.; De La Fuente Vázquez, J.; Díaz, M.T.; González Cano, J.; Carro, M.D. Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs. Animals 2020, 10, 487. https://doi.org/10.3390/ani10030487
Haro A, de Evan T, De La Fuente Vázquez J, Díaz MT, González Cano J, Carro MD. Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs. Animals. 2020; 10(3):487. https://doi.org/10.3390/ani10030487
Chicago/Turabian StyleHaro, Andres, Trinidad de Evan, Jesús De La Fuente Vázquez, María Teresa Díaz, Javier González Cano, and María Dolores Carro. 2020. "Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs" Animals 10, no. 3: 487. https://doi.org/10.3390/ani10030487
APA StyleHaro, A., de Evan, T., De La Fuente Vázquez, J., Díaz, M. T., González Cano, J., & Carro, M. D. (2020). Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs. Animals, 10(3), 487. https://doi.org/10.3390/ani10030487