Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Grape Pomace (GP)
2.3. Pressure Cooking of Grape Pomace with Added Acid
2.4. Pressure Cooking of Grape Pomace with Added Alkaline
2.5. Bacteria Culture Activation and Preparation
2.6. Semi-Solid Fermentation of Grape Pomace
2.7. Bacteria Enumeration
2.8. Sample Extraction and Analysis
2.8.1. OTA Quantification and Recovery
2.8.2. Total Anthocyanin (TA) Quantification
2.8.3. Total Flavonoid (TF) Quantification
2.8.4. Total Polyphenol (TP) Quantification
2.9. Statistical Analyses
3. Results
3.1. Representative Chromatograms of OTA Standard and Grape Pomace Extracts
3.2. Effect of Pressure Cooking on OTA Concentration and Polyphenol Composition in GP
3.3. Effect of Pressure Cooking in the Presence of Acids on OTA Concentration and Polyphenol Composition in GP
3.4. Effect of NaHCO3 and Pressure Cooking on OTA Concentration and Total Polyphenol Composition in GP
3.5. Effect of Fermentation Time on pH and Bacterial Populations in GP
3.6. Effects of Fermentation with Different Lactic Acid Bacteria Strains on the OTA in Grape Pomace
3.7. Effects of Fermentation with Different Lactic Acid Bacteria on the Polyphenols in Grape Pomace
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Acetic Acid |
CA | Citric Acid |
DI | Deionized Water |
GP | Grape Pomace |
HCL | Hydrochloric Acid |
LAB | Lactic Acid Bacteria |
NaHCO3 | Sodium Bicarbonate |
NaOH | Sodium Hydroxide |
OD | Optical Density |
OTA | Ochratoxin A |
OTα | Ochratoxin alpha |
TA | Total Anthocyanin |
TF | Total Flavonoid |
TP | Total Polyphenol |
UPLC | Ultra-Performance Liquid Chromatography |
References
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Sun, X.; Wei, X.; Zhang, J.; Ge, Q.; Liang, Y.; Ju, Y.; Zhang, A.; Ma, T.; Fang, Y. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries. Waste Manag. 2020, 104, 119–129. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Coria-Oliveros, A.J.; de la Rosa, L.A.; Rodrigo-García, J.; del Rocío Martínez-Ruiz, N.; Sayago-Ayerdi, S.G.; Alvarez-Parrilla, E. Cardioprotective effect of red wine and grape pomace. Food Res. Int. 2021, 140, 110069. [Google Scholar] [CrossRef] [PubMed]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extract as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef]
- El Oirdi, M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals 2024, 17, 692. [Google Scholar] [CrossRef]
- Aditya, S.; Ohh, S.-J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Santos, I.D.; Wagner, R.; Laporta, L.V.; Stefani, L.M.; et al. Addition of grape pomace flour in the diet on laying hens in heat stress: Impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg. J. Therm. Biol. 2019, 80, 141–149. [Google Scholar] [CrossRef]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace—Effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2021, 101, 101519. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.N.; Yu, J. Nutritional and sensory quality of bread containing different quantities of grape pomace from different grape cultivars. Ec Nutr. 2015, 2, 291–301. [Google Scholar]
- Maman, R.; Yu, J. Chemical Composition and Particle Size of Grape Seed Flour and Their Effects on the Characteristics of Cookies. J. Food Res. 2019, 8, 111. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Panzarini, G.; Visconti, A. Determination of ochratoxin A in grapes, dried vine fruits, and winery byproducts by high-performance liquid chromatography with fluorometric detection (HPLC−FLD) and immunoaffinity cleanup. J. Agric. Food Chem. 2008, 56, 11081–11086. [Google Scholar] [CrossRef]
- Yu, J.; Smith, I.; Karlton-Senaye, B.; Mikiashvili, N.; Williams, L. Impacts of Different Drying Methods on Mold Viability and Ochratoxin A Content of Grape Pomace. Int. J. Appl. Agric. Sci. 2018, 4, 2. [Google Scholar] [CrossRef]
- Yu, J.; Smith, I.N.; Mikiashvili, N. Reducing Ochratoxin A Content in Grape Pomace by Different Methods. Toxins 2020, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pedroso, I.R. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins 2023, 15, 480. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). COMMISSION REGULATION (EU) 2022/1370 of 5 August 2022 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Ochratoxin A in Certain Foodstuffs. 2022. Available online: https://eur-lex.europa.eu/eli/reg/2022/1370/oj/eng (accessed on 18 July 2025).
- Canadian Food Inspection Agency. Ochratoxin A in Selected Foods—April 1, 2012 to March 31, 2018 and April 1, 2019 to March 31, 2022. 2022. Available online: https://inspection.canada.ca/en/food-safety-industry/food-chemistry-and-microbiology/food-safety-testing-reports-and-journal-articles/ochratoxin-selected-foods (accessed on 18 July 2025).
- Chen, W.; Li, C.; Zhang, B.; Zhou, Z.; Shen, Y.; Liao, X.; Yang, J.; Wang, Y.; Li, X.; Li, Y.; et al. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front. Microbiol. 2018, 9, 1386. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01386 (accessed on 18 July 2025). [CrossRef]
- Dahal, S.; Lee, H.J.; Gu, K.; Ryu, D. Heat Stability of Ochratoxin A in an Aqueous Buffered Model System. J. Food Prot. 2016, 79, 1748–1752. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Ryu, D.; Lee, H.J. Ochratoxin A and its reaction products affected by sugars during heat processing. Food Chem. 2021, 348, 129038. [Google Scholar] [CrossRef]
- Varga, J.; Kocsubé, S.; Péteri, Z.; Vágvölgyi, C.; Tóth, B. Chemical, Physical and Biological Approaches to Prevent Ochratoxin Induced Toxicoses in Humans and Animals. Toxins 2010, 2, 1718–1750. [Google Scholar] [CrossRef]
- Ferraz, M.B.M.; Farah, A.; Iamanaka, B.T.; Perrone, D.; Copetti, M.V.; Marques, V.X.; Vitali, A.A.; Taniwaki, M.H. Kinetics of ochratoxin A destruction during coffee roasting. Food Control 2010, 21, 872–877. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Collaborators. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J.AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Yu, J. Thermal Stability of Major Classes of Polyphenols in Skins, Seeds and Stems of Grape Pomace. In Grapes: Production, Phenolic Composition and Potential Biomedical Effects; de Sousa Camara, J., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2014; pp. 273–285. Available online: https://www.novapublishers.com/catalog/product_info.php?products_id=51157 (accessed on 18 July 2025).
- Boudra, H.; Le Bars, P.; Le Bars, J. Thermostability of Ochratoxin A in wheat under two moisture conditions. Appl. Environ. Microbiol. 1995, 61, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Sueck, F.; Hemp, V.; Specht, J.; Torres, O.; Cramer, B.; Humpf, H.-U. Occurrence of the Ochratoxin A Degradation Product 2′R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 2019, 11, 329. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Prior, R.L. Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res. Int. 2010, 43, 1464–1469. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of pH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Honda, S.; Ishida, R.; Hidaka, K.; Masuda, T. Stability of Polyphenols under Alkaline Conditions and the Formation of a Xanthine Oxidase Inhibitor from Gallic Acid in a Solution at pH 7.4. Food Sci. Technol. Res. 2019, 25, 123–129. [Google Scholar] [CrossRef]
- Junqua, R.; Carullo, D.; Ferrari, G.; Pataro, G.; Ghidossi, R. Ohmic heating for polyphenol extraction from grape berries: An innovative prefermentary process. OENO One 2021, 55, 39–51. [Google Scholar] [CrossRef]
- Rahman, M.J.; Malunga, L.N.; Eskin, M.; Eck, P.; Thandapilly, S.J.; Thiyam-Hollander, U. Valorization of Heat-Treated Brewers’ Spent Grain Through the Identification of Bioactive Phenolics by UPLC-PDA and Evaluation of Their Antioxidant Activities. Front. Nutr. 2021, 8, 634519. [Google Scholar] [CrossRef]
- Jan, N.; Anjum, S.; Wani, S.M.; Mir, S.A.; Malik, A.R.; Wani, S.A.; Hussein, D.S.; Rasheed, R.A.; Gatasheh, M.K. Influence of Canning and Storage on Physicochemical Properties, Antioxidant Properties, and Bioactive Compounds of Apricot (Prunus armeniaca L.) Wholes, Halves, and Pulp. Front. Nutr. 2022, 9, 850730. [Google Scholar] [CrossRef]
- Trivedi, A.B.; Doi, E.; Kitabatake, N. Detoxification of Ochratoxin A on Heating under Acidic and Alkaline Conditions. Biosci. Biotechnol. Biochem. 1992, 56, 741–745. [Google Scholar] [CrossRef]
- Xiao, H.; Madhyastha, S.; Marquardt, R.R.; Li, S.; Vodela, J.K.; Frohlich, A.A.; Kemppainen, B.W. Toxicity of Ochratoxin A, Its Opened Lactone Form and Several of Its Analogs: Structure–Activity Relationships. Toxicol. Appl. Pharmacol. 1996, 137, 182–192. [Google Scholar] [CrossRef]
- Cheynier, V. Polyphenols in foods are more complex than often thought2. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Swenson, V.A.; Stacy, A.D.; Gaylor, M.O.; Ushijima, B.; Philmus, B.; Cozy, L.M.; Videau, N.M.; Videau, P. Assessment and verification of commercially available pressure cookers for laboratory sterilization. PLoS ONE 2018, 13, e0208769. [Google Scholar] [CrossRef] [PubMed]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.; Rietjens, I.M. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef]
- Harčárová, M.; Čonková, E.; Naď, P.; Proškovcová, M. Zearalenone Biodegradation by the Lactobacillus spp. and Bacillus spp. In Vitro. Folia Vet. 2022, 66, 70–74. [Google Scholar] [CrossRef]
- Adegoke, T.V.; Yang, B.; Xing, F.; Tian, X.; Wang, G.; Tai, B.; Si, P.; Hussain, S.; Jahan, I. Microbial Enzymes Involved in the Biotransformation of Major Mycotoxins. J. Agric. Food Chem. 2023, 71, 35–51. [Google Scholar] [CrossRef]
- Cho, S.M.; Jeong, S.E.; Lee, K.R.; Sudhani, H.P.K.; Kim, M.; Hong, S.-Y.; Chung, S.H. Biodegradation of Ochratoxin A by Aspergillus tubingensis Isolated from Meju. J. Microbiol. Biotechnol. 2016, 26, 1687–1695. [Google Scholar] [CrossRef]
- Kholif, A.M.M.; Fouad, M.T.; El-desouky, T.A. Evaluation of enzymatic degradation of ochratoxin A by protease and lipase produced by lactobacillus isolated from dairy products. Int. J. Front. Biol. Pharm. Res. 2022, 3, 009–017. [Google Scholar] [CrossRef]
- Campanella, D.; Rizzello, C.G.; Fasciano, C.; Gambacorta, G.; Pinto, D.; Marzani, B.; Scarano, N.; De Angelis, M.; Gobbetti, M. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiol. 2017, 65, 25–35. [Google Scholar] [CrossRef]
- Balea, Ş.S.; Pârvu, A.E.; Pop, N.; Marín, F.Z.; Pârvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxidative Med. Cell. Longev. 2018, 2018, 8194721. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Shah, I.M.; Surek, E.; Barile, D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023, 9, e20499. [Google Scholar] [CrossRef]
- Tabasco, R.; Sánchez-Patán, F.; Monagas, M.; Bartolomé, B.; Victoria Moreno-Arribas, M.; Peláez, C.; Requena, T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiol. 2011, 28, 1345–1352. [Google Scholar] [CrossRef]
- Sørensen, K.I.; Curic-Bawden, M.; Junge, M.P.; Janzen, T.; Johansen, E. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Appl. Environ. Microbiol. 2016, 82, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Gubelt, A.; Blaschke, L.; Hahn, T.; Rupp, S.; Hirth, T.; Zibek, S. Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products. Curr. Microbiol. 2020, 77, 3136–3146. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The Carbohydrate Metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, P.; Maggiolino, A.; Albano, C.; De Palo, P.; Blando, F. Ensiling Grape Pomace with and Without Addition of a Lactiplantibacillus plantarum Strain: Effect on Polyphenols and Microbiological Characteristics, in vitro Nutrient Apparent Digestibility, and Gas Emission. Front. Vet. Sci. 2022, 9, 808293. [Google Scholar] [CrossRef]
- De Montijo-Prieto, S.; Razola-Díaz, M.d.C.; Barbieri, F.; Tabanelli, G.; Gardini, F.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants 2023, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Telini, B.d.P.; Villa, L.C.; Vainstein, M.H.; Lopes, F.C. From Vineyard to Brewery: A Review of Grape Pomace Characterization and Its Potential Use to Produce Low-Alcohol Beverages. Fermentation 2025, 11, 57. [Google Scholar] [CrossRef]
Fermentation Time (h) | Lc. paracasei | L. acidophilus | Lp. plantarum | L. bulgaricus |
---|---|---|---|---|
0 | 8.27 ± 0.01 fB | 8.46 ± 0.01 gA | 8.45 ± 0.01 fA | 8.00 ± 0.01 gC |
4 | 8.87 ± 0.08 dB | 9.12 ± 0.02 eA | 8.95 ± 0.03 deB | 8.42 ± 0.01 fC |
8 | 9.27 ± 0.02 aC | 9.44 ± 0.01 bA | 9.31 ± 0.01 aB | 9.27 ± 0.01 bC |
12 | 9.18 ± 0.03 bC | 9.47 ± 0.01 aA | 9.19 ± 0.02 bC | 9.32 ± 0.01 aB |
24 | 9.02 ± 0.04 cC | 9.38 ± 0.01 cA | 9.07 ± 0.03 cC | 9.24 ± 0.01 cB |
48 | 8.87 ± 0.03 dD | 9.22 ± 0.02 dA | 8.99 ± 0.04 dC | 9.10 ± 0.02 dB |
72 | 8.71 ± 0.03 eC | 9.03 ± 0.03 fA | 8.41 ± 0.01 gD | 8.88 ± 0.03 eB |
L. bulgaricus | Lc. paracasei | L. acidophilus | Lp. plantarum | |||||
---|---|---|---|---|---|---|---|---|
Fermentation Time (h) | OTA (ng/g) | Reduction (%) | OTA (ng/g) | Reduction (%) | OTA (ng/g) | Reduction (%) | OTA (ng/g) | Reduction (%) |
UNT | 50.00 ± 0.41 aA | 0 | 50.00 ± 0.41 aA | 0 | 50.00 ± 0.41 aA | 0 | 50.00 ± 0.41 aA | 0 |
0 | 34.51 ± 0.48 bA | 30.99 | 34.74 ± 0.39 bA | 30.99 | 34.51 ± 0.48 bA | 30.99 | 34.51 ± 0.48 bA | 30.99 |
4 | 33.81 ± 0.16 bA | 32.38 | 28.00 ± 0.26 cC | 44.37 | 26.57 ± 0.52 cD | 46.86 | 28.13 ± 0.52 cB | 43.75 |
8 | 33.20 ± 0.20 dA | 33.6 | 22.37 ± 0.32 dB | 55.56 | 20.96 ± 0.59 dC | 58.09 | 20.92 ± 0.62 dC | 58.16 |
12 | 32.73 ± 0.30 dA | 34.55 | 15.76 ± 0.24 eB | 68.7 | 15.47 ± 0.23 eB | 69.05 | 14.99 ± 0.07 eC | 70.02 |
24 | 31.15 ± 0.24 eA | 37.7 | 1.52 ± 0.02 fB | 96.98 | 1.14 ± 0.03 fD | 96.7 | 2.45 ± 0.13 fC | 92.89 |
48 | 27.96 ± 0.58 fA | 41.81 | 1.44 ± 0.06 fgC | 97.14 | 1.01 ± 0.03 hD | 97.98 | 2.40 ± 0.47 gB | 95.2 |
72 | 27.59 ± 0.14 fgA | 44.81 | 1.17 ± 0.03 hC | 97.68 | 1.00 ± 0.03 hD | 97.1 | 1.37 ± 0.02 ghB | 96.02 |
Fermentation Time (h) | Lc. paracasei | L. acidophilus | Lp. plantarum | L. bulgaricus |
---|---|---|---|---|
TA (mg/g) | ||||
UNT | 0.49 ± 0.01 a | 0.49 ± 0.01 a | 0.49 ± 0.01 a | 0.49 ± 0.01 a |
0 | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.07 ± 0.00 b |
4 | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c |
8 | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c |
12 | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c | 0.06 ± 0.00 c |
24 | 0.06 ± 0.00 c | 0.05 ± 0.00 d | 0.05 ± 0.00 d | 0.06 ± 0.00 c |
48 | 0.06 ± 0.00 c | 0.05 ± 0.00 d | 0.05 ± 0.00 d | 0.05 ± 0.00 d |
72 | 0.05 ± 0.00 d | 0.05 ± 0.00 d | 0.05 ± 0.00 d | 0.05 ± 0.00 d |
TF (mg/g wet GP) | ||||
UNT | 0.47 ± 0.00 h | 0.47 ± 0.00 h | 0.47 ± 0.00 h | 0.47 ± 0.00 f |
0 | 0.62 ± 0.01 g | 0.62 ± 0.01 f | 0.62 ± 0.01 f | 0.62 ± 0.01 d |
4 | 0.68 ± 0.00 eB | 0.69 ± 0.01 e | 0.65 ± 0.01 eC | 0.82 ± 0.01 aA |
8 | 0.76 ± 0.01 cB | 0.78 ± 0.01 cA | 0.74 ± 0.01 cC | 0.76 ± 0.01 bB |
12 | 0.79 ± 0.01 bB | 0.82 ± 0.02 bA | 0.79 ± 0.01 bB | 0.76 ± 0.01 bC |
24 | 0.81 ± 0.00 aB | 0.91 ± 0.01 aA | 0.82 ± 0.01 aB | 0.65 ± 0.00 cC |
48 | 0.70 ± 0.01 dB | 0.75 ± 0.00 dA | 0.71 ± 0.02 dB | 0.62 ± 0.01 dC |
72 | 0.65 ± 0.00 fA | 0.58 ± 0.01 gB | 0.49 ± 0.00 gC | 0.57 ± 0.01 eB |
TP (mg/g wet GP) | ||||
UNT | 3.22 ± 0.01 e | 3.22 ± 0.01 f | 3.22 ± 0.01 g | 3.22 ± 0.01 g |
0 | 3.79 ± 0.05 a | 3.79 ± 0.05 a | 3.79 ± 0.05 a | 3.79 ± 0.05 a |
4 | 3.73 ± 0.01 abB | 3.75 ± 0.00 bA | 3.69 ± 0.04 bBC | 3.65 ± 0.04 bCD |
8 | 3.70 ± 0.00 bB | 3.73 ± 0.01 bcA | 3.67 ± 0.03 bcC | 3.60 ± 0.01 bcD |
12 | 3.67 ± 0.02 cB | 3.71 ± 0.01 cA | 3.61 ± 0.01 dC | 3.51 ± 0.04 dD |
24 | 3.60 ± 0.01 dB | 3.67 ± 0.03 dA | 3.53 ± 0.03 eC | 3.41 ± 0.02 eD |
48 | 3.24 ± 0.05 eC | 3.27 ± 0.03 eBC | 3.40 ± 0.00 fA | 3.31 ± 0.01 fB |
72 | 3.01 ± 0.03 fB | 2.68 ± 0.00 gC | 2.69 ± 0.02 hC | 3.20 ± 0.03 gA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aning-Dei, E.; Yu, J.; Ibrahim, S.A. Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation. Microorganisms 2025, 13, 1972. https://doi.org/10.3390/microorganisms13091972
Aning-Dei E, Yu J, Ibrahim SA. Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation. Microorganisms. 2025; 13(9):1972. https://doi.org/10.3390/microorganisms13091972
Chicago/Turabian StyleAning-Dei, Ebenezer, Jianmei Yu, and Salam A. Ibrahim. 2025. "Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation" Microorganisms 13, no. 9: 1972. https://doi.org/10.3390/microorganisms13091972
APA StyleAning-Dei, E., Yu, J., & Ibrahim, S. A. (2025). Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation. Microorganisms, 13(9), 1972. https://doi.org/10.3390/microorganisms13091972