Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. The Production of Jinmu Grain Grass Silage
2.2. Sample Collection of Jinmu Grain Grass Silage
2.3. Detection of Indicators
2.3.1. Determination of Nutritional Composition
2.3.2. Determination of Silage Fermentation Quality
2.4. Bacterial Community Analysis
2.5. Metabolomics Analysis
2.5.1. Metabolite Extraction
2.5.2. Liquid Chromatography Conditions
2.5.3. Mass Spectrum Conditions
2.5.4. Metabolite Data Analysis
2.6. Data Analysis
3. Results
3.1. The Influence of Different Storage Times on the Nutritional Composition of Jinmu Grain Grass
3.2. The Influence of Different Storage Times on the Fermentation Quality of Jinmu Grain Grass
3.3. The Influence of Different Storage Times on the Microbial Community of Jinmu Grain Grass
3.3.1. Analysis of Microbial Community Diversity
3.3.2. Microbial Community Structure and Differences
3.4. The Influence of Different Storage Times on the Metabolomics of Jinmu Grain Grass
3.4.1. Metabolomics Profile Analysis
3.4.2. Analysis of Secondary Differential Metabolites After 0, 30, and 60 Days of Ensiling
3.4.3. Venn Analysis of the Secondary Differential Metabolites in Each Comparison Group
3.4.4. Enrichment Analysis of KEGG Pathways for Differential Metabolites
4. Discussion
4.1. The Influence of Different Storage Times on the Nutritional Composition and Fermentation Quality of Jinmu Grain Grass
4.2. The Influence of Different Storage Times on the Microbial Community of Jinmu Grain Grass
4.3. The Influence of Different Storage Times on the Metabolomics of Jinmu Grain Grass
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlik, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [PubMed]
- Philp, J.; Komarek, A.M.; Pain, S.J.; Li, X.; Bellotti, W. Improving the use of available feed resources to overcome sheep feeding deficits in western china. Anim. Prod. Sci. 2016, 56, 1545–1550. [Google Scholar] [CrossRef]
- Jin, G. Effects of Jinmu grain grass silage on fattening, weight gain, and flavor of salt pond Tan Sheep. Feed. Res. 2022, 45, 29–32. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y. Xie Rong, the “Queen of forage”, uses Jinmu grain grass to build a dream of rural revitalization. Green China 2023, 6, 42–43. (In Chinese) [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Lin, Y.; Yang, F.; Cai, Y. Using pacbio smrt sequencing technology and metabolomics to explore the microbiota-metabolome interaction related to silage fermentation of woody plant. Front. Microbiol. 2022, 13, 857431. [Google Scholar] [CrossRef] [PubMed]
- Coons, E.; Akins, M.S. Effects of low temperature and ensiling time on fermentation and nutritive value of sorghum—sudangrass silage. Appl. Anim. Sci. 2025, 41, 156–161. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- GB/T 6435-2014; Determination of Moisture in Feedstuffs. National Standards Committee: Beijing, China, 2014.
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. National Standards Committee: Beijing, China, 2018.
- GB/T 6433-2006; Determinaiion of Crude Fat in Feeds. National Standards Committee: Beijing, China, 2006.
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Vasilev, N.; Boccard, J.; Lang, G.; Gromping, U.; Fischer, R.; Goepfert, S.; Rudaz, S.; Schillberg, S. Structured plant metabolomics for the simultaneous exploration of multiple factors. Sci. Rep. 2016, 6, 37390. [Google Scholar] [CrossRef]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; et al. Development of a robust and repeatable uplc-ms method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via uplc-ms. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, X.; Wu, T.; Jiang, J.; Jiang, Y.; Zhang, S.; Ruan, Y.; Zhang, H.; Zhang, C.; Chen, P.; et al. Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. J. Transl. Med. 2022, 20, 123, Erratum in J. Transl. Med. 2022, 20, 366. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Ling, W.; Liu, K.; Ma, S.; Xu, Z.; Wu, X.; Zhou, J.; Yang, F. Optimisation of nutritional value, fibre degradation, and microbial diversity in hybrid pennisetum silage via white-rot fungal fermentation for improved bioresource utilisation. Int. J. Biol. Macromol. 2025, 319, 145683. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, X.; Elsabagh, M.; Lin, B.; Wang, H. Effects of formic acid and corn flour supplementation of banana pseudostem silages on nutritional quality of silage, growth, digestion, rumen fermentation and cellulolytic bacterial community of nubian black goats. J. Integr. Agric. 2021, 20, 2214–2226. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Sun, L.; Guo, L.; Xiong, Y.; Wang, Y.; Zhou, H.; Jia, S.; Yang, F.; et al. Impacts of low temperature and ensiling period on the bacterial community of oat silage by smrt. Microorganisms 2021, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Shao, T. Exploring the ensiling characteristics and bacterial community of red clover inoculated with the epiphytic bacteria from temperate gramineous grasses. J. Appl. Microbiol. 2022, 132, 177–188. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Cui, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, F.; Wang, Y.; Fan, X.; Feng, C.; Wang, Y. Dynamics of fermentation parameters and bacterial community in high-moisture alfalfa silage with or without lactic acid bacteria. Microorganisms 2021, 9, 1225. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, R.; Yang, M.; Law, Y.; Sun, F.; Hon, N.L.; Ngai, S.M.; Lim, B.L. A balance between the activities of chloroplasts and mitochondria is crucial for optimal plant growth. Antioxidants 2021, 10, 935. [Google Scholar] [CrossRef]
- Wang, J.; Fang, J.; Wei, L.; Zhang, Y.; Deng, H.; Guo, Y.; Hu, C.; Meng, Y. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in atlantic salmon fillets. LWT 2019, 101, 419–426. [Google Scholar] [CrossRef]
- Parente, E.; Zotta, T.; Giavalisco, M.; Ricciardi, A. Metataxonomic insights in the distribution of lactobacillaceae in foods and food environments. Int. J. Food Microbiol. 2023, 391–393, 110124. [Google Scholar] [CrossRef]
- Jia, T.; Yun, Y.; Yu, Z. Propionic acid and sodium benzoate affected biogenic amine formation, microbial community, and quality of oat silage. Front. Microbiol. 2021, 12, 750920. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Li, X.; MacAdam, J.W.; Zhang, Y. Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Front. Microbiol. 2023, 14, 1164904. [Google Scholar] [CrossRef] [PubMed]
- Pujato, S.A.; Guglielmotti, D.M.; Martinez-Garcia, M.; Quiberoni, A.; Mojica, F.J.M. Leuconostoc mesenteroides and leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 2017, 257, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.C.; Su, R.; Franco, M.; Rinne, M.; Xu, D.M.; Zhang, G.J.; Guo, X.S. Impact of inoculants on alfalfa silage: A multi-omics analysis reveals microbial community and metabolic shifts despite undesirable fermentation quality. Anim. Feed Sci. Technol. 2025, 324, 116329. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus lactobacillus: Description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of lactobacillaceae and leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Kaka, N.A.; Shao, T. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour. Technol. 2020, 309, 123371. [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Lin, Y.; Yang, F.; Cai, Y. The use of pacbio smrt technology to explore the microbial network and fermentation characteristics of woody silage prepared with exogenous carbohydrate additives. J. Appl. Microbiol. 2021, 131, 2193–2211. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [Google Scholar] [CrossRef]
- Kumar, N.; Hoque, M.A.; Sugimoto, M. Robust volcano plot: Identification of differential metabolites in the presence of outliers. BMC Bioinform. 2018, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Zhang, W.; Wang, J.; Hu, F.; Thakur, K.; Wei, Z. Differential metabolites analysis in lycium barbarum and platycodon grandiflorus fermented wine by untargeted metabolomics. Appl. Food Res. 2024, 4, 100631. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, R.; Golding, J.B.; Deng, L.; Zhou, J.; Liang, L.; Wang, B. Transcriptomic and metabolomic analysis reveal the role of 5-aminolevulinic acid hydrochloride in suppressing postharvest decay development in sweet cherry. Postharvest Biol. Technol. 2025, 221, 113339. [Google Scholar] [CrossRef]
- Dong, K.; Ye, Z.; Hu, F.; Shan, C.; Wen, D.; Cao, J. Improvement of plant quality by amino acid transporters: A comprehensive review. Plant Physiol. Biochem. 2024, 215, 109084. [Google Scholar] [CrossRef]
- Gonda, I.; Davidovich-Rikanati, R.; Bar, E.; Lev, S.; Jhirad, P.; Meshulam, Y.; Wissotsky, G.; Portnoy, V.; Burger, J.; Schaffer, A.A.; et al. Differential metabolism of l-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) Fruit. Phytochemistry 2018, 148, 122–131. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.; Pan, Z.; Guan, R.; Yang, P.; Liu, Y.; Yang, X.; Du, W.; Liang, J.; Hu, J.; et al. Integration of pharmacodynamics, network pharmacology and metabolomics to elucidate effect and mechanism of artemisia capillaris thunb. In the treatment of jaundice. J. Ethnopharmacol. 2023, 303, 115943. [Google Scholar] [CrossRef]
- Li, W.; Liao, L.; Song, N.; Liu, Y.; Ding, Y.; Zhang, Y.; Zhou, X.; Sun, Z.; Xiao, S.; Wang, H.; et al. Natural product 1,2,3,4,6-penta-o-galloyl-β-d-glucopyranose is a reversible inhibitor of glyceraldehyde 3-phosphate dehydrogenase. Acta Pharmacol. Sin. 2022, 43, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.S.; Bai, J.; Li, F.H.; Xu, D.M.; Zhang, Y.X.; Bu, D.P.; Zhao, L.S. Effects of malate, citrate, succinate and fumarate on fermentation, chemical composition, aerobic stability and digestibility of alfalfa silage. Anim. Feed. Sci. Technol. 2020, 268, 114604. [Google Scholar] [CrossRef]
- Ye, L.; Yu, J.; Zhang, X.; Yu, F.; Zeng, T.; Gu, L.; Zhu, B.; Wang, H.; Du, X. Physiological, transcriptomic and metabolomic analyses reveal that exogenous arginine alleviate the response of Sorghum bicolor L. To cadmium stress. Ind. Crops Prod. 2025, 229, 120970. [Google Scholar] [CrossRef]
- Su, R.; Ke, W.; Usman, S.; Bai, J.; Akhavan Kharazian, Z.; Guo, X. Dry matter content and inoculant alter the metabolome and bacterial community of alfalfa ensiled at high temperature. Appl. Microbiol. Biotechnol. 2023, 107, 3443–3457. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, K.; Zhang, X.; Cao, J.; Jia, Z.; Yang, R.; Ma, C.; Chen, C.; Zhang, T.; Yan, Z. Studies on the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in valeriana jatamansi jones. Biomed. Pharmacother. 2016, 84, 1891–1898. [Google Scholar] [CrossRef]
- Brychta, R.; Wohlers, E.; Moon, J.; Chen, K. Energy expenditure: Measurement of human metabolism. IEEE Eng. Med. Biol. Mag. 2010, 29, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Histidine metabolism and function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Ge, L.; Tang, H.; Hu, J.; Li, X.; Wang, X.; Zhang, Y.; Shi, Q. Integrated metabolomic and transcriptomic analyses reveal the roles of alanine, aspartate and glutamate metabolism and glutathione metabolism in response to salt stress in tomato. Sci. Hortic. 2024, 328, 112911. [Google Scholar] [CrossRef]
- Rosenberg, J.; Ischebeck, T.; Commichau, F.M. Vitamin b6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 2017, 35, 31–40. [Google Scholar] [CrossRef]
- Xing, N.; Li, X.; Wu, S.; Wang, Z. Transcriptome and metabolome reveal key genes from the plant hormone signal transduction pathway regulating plant height and leaf size in capsicum baccatum. Cells 2024, 13, 827. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Yang, B.; Li, C.; Ren, Y.; Li, S.; Zhang, X.; Han, X. Light-driven carbon fixation using photosynthetic organelles in artificial photosynthetic cells. Angew. Chem. Int. Ed. 2025, 64, e202421827. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhang, Y.; Yi, W.; Zhang, S.; Zhang, Q.; Xing, P.; Tang, X. Foliar application of phenylalanine, tryptophan, and tyrosine in fragrant rice production: Aroma, yield, grain quality, and economic return. Eur. J. Agron. 2024, 155, 127117. [Google Scholar] [CrossRef]
- Wu, J.X.; Zong, C.; Shao, T.; Liang, Y.S.; McCann, J.C.; Dong, Z.H.; Li, J.F.; Zhang, J.; Liu, Q.H. Clarifying the relationships among bacteria, lipid-related enzymes, main polyunsaturated fatty acids and fat-soluble vitamins in alfalfa (Medicago sativa L.) Silage using various sugar supplementations. Anim. Feed Sci. Technol. 2021, 272, 114799. [Google Scholar] [CrossRef]
- Elkin, R.G.; El-Zenary, A.S.A.; Bomberger, R.; Harvatine, K.J. Supplemental dietary oils rich in oleic acid or linoleic acid attenuate egg yolk and tissue n-3 polyunsaturated fatty acid contents in laying hens co-fed oils enriched in either stearidonic acid or alpha-linolenic acid. Prostaglandins Leukot. Essent. Fat. Acids 2021, 172, 102322. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Santos, J.L.; Martínez-González, M.A.; Clish, C.B.; Razquin, C.; Wang, D.; Liang, L.; Li, J.; Dennis, C.; Corella, D.; et al. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, mediterranean diet, and type 2 diabetes. Am. J. Clin. Nutr. 2020, 111, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yang, L.; Xia, L.; Zhang, H.; Zhang, S. Interspecific grafting promotes poplar growth and drought resistance via regulating phytohormone signaling and secondary metabolic pathways. Plant Physiol. Biochem. 2024, 210, 108594. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.; Li, F.; Guo, X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Chen, C.; Lin, J.; Yang, F.; Cai, Y. Exploring microbial community structure and metabolic gene clusters during silage fermentation of paper mulberry, a high-protein woody plant. Anim. Feed Sci. Technol. 2021, 275, 114766. [Google Scholar] [CrossRef]
- Du, Z.; Yamasaki, S.; Oya, T.; Nguluve, D.; Euridse, D.; Tinga, B.; Macome, F.; Cai, Y. Microbial co-occurrence network and fermentation information of natural woody-plant silage prepared with grass and crop by-product in southern africa. Front. Microbiol. 2022, 13, 756209. [Google Scholar] [CrossRef] [PubMed]
Items | 0 d | 3 d | 7 d | 15 d | 30 d | 60 d | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
DM | 18.47 | 18.64 | 19.50 | 19.35 | 17.82 | 17.07 | 1.351 | 0.244 |
EE | 10.45 | 11.05 | 10.74 | 10.69 | 10.54 | 10.54 | 1.326 | 0.750 |
CP | 11.62 | 10.32 | 10.11 | 7.93 | 9.49 | 9.31 | 0.954 | 0.679 |
NDF | 75.04 | 75.17 | 75.06 | 74.64 | 74.04 | 73.55 | 5.761 | 0.297 |
ADF | 42.78 | 42.70 | 42.36 | 41.88 | 41.01 | 40.77 | 1.791 | 0.294 |
RFV | 68.89 b | 68.85 b | 69.28 b | 70.14 b | 71.56 a | 72.27 a | 2.170 | 0.048 |
Items | 0 d | 3 d | 7 d | 15 d | 30 d | 60 d | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
pH | 6.16 a | 5.47 b | 5.06 bc | 4.51 cd | 4.33 de | 4.01 e | 0.093 | <0.001 |
NH3-N/TN (%) | 0.93 e | 3.07 d | 3.42 c | 3.89 bc | 4.32 b | 5.08 a | 1.033 | <0.001 |
LA (%DM) | 0.54 d | 1.07 de | 1.77 d | 2.94 c | 5.37 b | 6.57 a | 0.915 | <0.001 |
AA (%DM) | 0.29 d | 0.84 cd | 1.07 c | 1.12 c | 2.08 b | 2.77 a | 0.487 | 0.017 |
PA (%DM) | ND | 0.04 b | 0.05 b | 0.06 b | 0.07 ab | 0.08 a | 0.006 | 0.001 |
BA (%DM) | ND | ND | ND | ND | ND | ND | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Wang, Q.; Li, Q.; Wang, Y.; Gong, L.; Zhang, W.; Niu, J. Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage. Microorganisms 2025, 13, 1973. https://doi.org/10.3390/microorganisms13091973
Tang Y, Wang Q, Li Q, Wang Y, Gong L, Zhang W, Niu J. Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage. Microorganisms. 2025; 13(9):1973. https://doi.org/10.3390/microorganisms13091973
Chicago/Turabian StyleTang, Yaqin, Qianqian Wang, Qiuyan Li, Yasong Wang, Lei Gong, Wenju Zhang, and Junli Niu. 2025. "Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage" Microorganisms 13, no. 9: 1973. https://doi.org/10.3390/microorganisms13091973
APA StyleTang, Y., Wang, Q., Li, Q., Wang, Y., Gong, L., Zhang, W., & Niu, J. (2025). Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage. Microorganisms, 13(9), 1973. https://doi.org/10.3390/microorganisms13091973