Dendritic Cell-Based Therapeutic Immunization Induces Th1/Th17 Responses and Reduces Fungal Burden in Experimental Sporotrichosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Conditions
2.2. Extraction of the SsCWP
2.3. Preparation of the Heat-Killed (HKss)
2.4. BMDCs Generation
2.5. Stimulation of BMDCs with SsCWPs
2.6. Flow Cytometry
2.7. Cytokine Detection in Culture Supernatant
2.8. Vaccination of BALB/c Mice with BMDCs or SsCWP-Stimulated BMDCs
2.9. Total Splenocytes
2.10. Th1 and Th17 Analysis by Flow Cytometry
2.11. Th1/Th2/Th17-Related Cytokines Analysis by Cytometric Bead Array (CBA)
2.12. Infection Model
2.13. Fungal Load in the Spleen and Popliteal Lymph Node
2.14. Statistical Analysis
3. Results
3.1. SsCWPs Induce BMDC Activation
3.2. Single BMDC Immunization, With or Without SsCWP Stimulation, Induces a Balanced Th1/Th17 Response
3.3. BMDCs, Whether Unstimulated or SsCWP-Stimulated, Promote Th17/Th1 Responses and Decrease Fungal Burden in S. schenckii–Infected Mice
4. Discussion
5. Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van de Veerdonk, F.L.; Joosten, L.A.B.; Netea, M.G. The Interplay Between Inflammasome Activation and Antifungal Host Defense. Immunol. Rev. 2015, 265, 172–180. [Google Scholar] [CrossRef]
- Rochette, F.; Engelen, M.; Vanden Bossche, H. Antifungal Agents of Use in Animal Health–Practical Applications. J. Vet. Pharmacol. Ther. 2003, 26, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Cassone, A. Fungal Vaccines: Real Progress from Real Challenges. Lancet Infect. Dis. 2008, 8, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E. Fungal Cell Wall Vaccines: An Update. J. Med. Microbiol. 2012, 61, 895. [Google Scholar] [CrossRef]
- Portuondo, D.L.; Batista-Duharte, A.; Ferreira, L.S.; Martínez, D.T.; Polesi, M.C.; Duarte, R.A.; de Paula e Silva, A.C.A.; Marcos, C.M.; de Almeida, A.M.F.; Carlos, I.Z. A Cell Wall Protein-Based Vaccine Candidate Induce Protective Immune Response against Sporothrix schenckii Infection. Immunobiology 2016, 221, 300–309. [Google Scholar] [CrossRef]
- Specht, C.A.; Lee, C.K.; Huang, H.; Hester, M.M.; Liu, J.; Luckie, B.A.; Torres Santana, M.A.; Mirza, Z.; Khoshkenar, P.; Abraham, A.; et al. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species. mBio 2017, 8. [Google Scholar] [CrossRef]
- Ueno, K.; Kinjo, Y.; Okubo, Y.; Aki, K.; Urai, M.; Kaneko, Y.; Shimizu, K.; Wang, D.N.; Okawara, A.; Nara, T.; et al. Dendritic Cell-Based Immunization Ameliorates Pulmonary Infection with Highly Virulent Cryptococcus gattii. Infect. Immun. 2015, 83, 1577–1586. [Google Scholar] [CrossRef]
- Carlos, I.Z. Sporotrichosis. New Developments and Future Perspectives, 1st ed.; Springer International Publishing: Basel, Switzerland, 2015; 186p, ISBN 978-3-319-11911-3. e-book ISBN 978-3-319-11912-0. [Google Scholar] [CrossRef]
- Orofino-Costa, R.; Rodrigues, A.M.; de Macedo, P.M.; Bernardes-Engemann, A.R. Sporotrichosis: An Update on Epidemiology, Etiopathogenesis, Laboratory and Clinical Therapeutics. An. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal-Animal Transmission. PLoS Pathog. 2016, 12, e1005638. [Google Scholar] [CrossRef]
- Li, Z.; Lu, G.; Meng, G. Pathogenic Fungal Infection in the Lung. Front. Immunol. 2019, 10, 1524. [Google Scholar] [CrossRef]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.M.; Yuan, R.; Yi, X.; Li, L.; Gong, W.; Yang, T.; Li, L.; Su, S. Tissue-Resident Dendritic Cells and Diseases Involving Dendritic Cell Malfunction. Int. Immunopharmacol. 2016, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Jackson, C.; Kim, T.; Choi, J.; Lim, M. A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials. Cancers 2019, 11, 537. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Gonçalves, A.C.; Portuondo, D.L.; Maia, D.C.G.; Placeres, M.C.P.; Batista-Duharte, A.; Carlos, I.Z. Optimal Clearance of Sporothrix schenckii Requires an Intact Th17 Response in a Mouse Model of Systemic Infection. Immunobiology 2015, 220, 985–992. [Google Scholar] [CrossRef]
- Maia, D.C.G.; Sassá, M.F.; Placeres, M.C.P.; Carlos, I.Z. Influence of Th1/Th2 Cytokines and Nitric Oxide in Murine Systemic Infection Induced by Sporothrix schenckii. Mycopathologia 2006, 161, 11–19. [Google Scholar] [CrossRef]
- Batista-Duharte, A.; Téllez-Martínez, D.; Roberto de Andrade, C.; Portuondo, D.L.; Jellmayer, J.A.; Polesi, M.C.; Carlos, I.Z. Sporothrix brasiliensis Induces a More Severe Disease Associated with Sustained Th17 and Regulatory T Cells Responses than Sporothrix schenckii sensu stricto in Mice. Fungal Biol. 2018, 122, 1163–1170. [Google Scholar] [CrossRef]
- Verdan, F.F.; Faleiros, J.C.; Ferreira, L.S.; Monnazzi, L.G.S.; Maia, D.C.G.; Tansine, A.; Placeres, M.C.P.; Carlos, I.Z.; Santos-Junior, R.R. Dendritic Cell Are Able to Differentially Recognize Sporothrix schenckii Antigens and Promote Th1/Th17 Response in Vitro. Immunobiology 2012, 217, 788–794. [Google Scholar] [CrossRef]
- Portuondo, D.L.; Dores-Silva, P.R.; Ferreira, L.S.; de Oliveira, C.S.; Téllez-Martínez, D.; Marcos, C.M.; de Aguiar Loesch, M.L.; Guzmán, F.; Gava, L.M.; Borges, J.C.; et al. Immunization with Recombinant Enolase of Sporothrix spp. (RSsEno) Confers Effective Protection against Sporotrichosis in Mice. Sci. Rep. 2019, 9, 17179. [Google Scholar] [CrossRef]
- Alba-Fierro, C.A.; Pérez-Torres, A.; López-Romero, E.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Cell Wall Proteins of Sporothrix schenckii as Immunoprotective Agents. Rev. Iberoam. Micol. 2014, 31, 86–89. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Toriello, C.; Pérez-Torres, A.; Sabanero-Lopez, M.; Villagómez-Castro, J.C.; López-Romero, E. Isolation and Some Properties of a Glycoprotein of 70 KDa (Gp70) from the Cell Wall of Sporothrix schenckii Involved in Fungal Adherence to Dermal Extracellular Matrix. Med. Mycol. 2009, 47, 185–196. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Fernandes, G.F.; Araujo, L.M.; Della Terra, P.P.; dos Santos, P.O.; Pereira, S.A.; Schubach, T.M.P.; Burger, E.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens. PLoS Negl. Trop. Dis. 2015, 9, e0004016. [Google Scholar] [CrossRef]
- Worbs, T.; Hammerschmidt, S.I.; Förster, R. Dendritic Cell Migration in Health and Disease. Nat. Rev. Immunol. 2017, 17, 30–48. [Google Scholar] [CrossRef]
- Macri, C.; Pang, E.S.; Patton, T.; O’Keeffe, M. Dendritic Cell Subsets. Semin. Cell Dev. Biol. 2018, 84, 11–21. [Google Scholar] [CrossRef]
- Magalhães, A.; Ferreira, K.S.; Almeida, S.R.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. Prophylactic and Therapeutic Vaccination Using Dendritic Cells Primed with Peptide 10 Derived from the 43-Kilodalton Glycoprotein of Paracoccidioides brasiliensis. Clin. Vaccine Immunol. 2012, 19, 23–29. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef]
- Constantino, J.; Gomes, C.; Falcão, A.; Neves, B.M.; Cruz, M.T. Dendritic Cell-Based Immunotherapy: A Basic Review and Recent Advances. Immunol. Res. 2017, 65, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Uenotsuchi, T.; Takeuchi, S.; Matsuda, T.; Urabe, K.; Koga, T.; Uchi, H.; Nakahara, T.; Fukagawa, S.; Kawasaki, M.; Kajiwara, H.; et al. Differential Induction of Th1-Prone Immunity by Human Dendritic Cells Activated with Sporothrix schenckii of Cutaneous and Visceral Origins to Determine Their Different Virulence. Int. Immunol. 2006, 18, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Quinello, C.; Souza Ferreira, L.; Picolli, I.; Luiza Loesch, M.; Leandro Portuondo, D.; Batista-Duharte, A.I.; Carlos, I.Z. Sporothrix schenckii Cell Wall Proteins-Stimulated BMDCs Are Able to Induce a Th1-Prone Cytokine Profile In Vitro. J. Fungi 2018, 4, 106. [Google Scholar] [CrossRef]
- Funes, S.C.; Ríos, M.; Gómez-Santander, F.; Fernández-Fierro, A.; Altamirano-Lagos, M.J.; Rivera-Perez, D.; Pulgar-Sepúlveda, R.; Jara, E.L.; Rebolledo-Zelada, D.; Villarroel, A.; et al. Tolerogenic Dendritic Cell Transfer Ameliorates Systemic Lupus Erythematosus in Mice. Immunology 2019, 158, 322–339. [Google Scholar] [CrossRef]
- Gómez-Gaviria, M.; Martínez-Duncker, I.; García-Carnero, L.C.; Mora-Montes, H.M. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect. Drug Resist. 2023, 16, 4817–4834. [Google Scholar] [CrossRef]
- Kusuhara, M.; Qian, H.; Li, X.; Tsuruta, D.; Tsuchisaka, A.; Ishii, N.; Ohata, C.; Furumura, M.; Hashimoto, T. Mouse Bone Marrow-Derived Dendritic Cells Can Phagocytize the Sporothrix schenckii, and Mature and Activate the Immune Response by Secreting Interleukin-12 and Presenting Antigens to T Lymphocytes. J. Dermatol. 2014, 41, 386–392. [Google Scholar] [CrossRef]
- Steinman, R.M.; Pope, M. Exploiting Dendritic Cells to Improve Vaccine Efficacy. J. Clin. Investig. 2002, 109, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.V.; Nino-Castro, A.C.; Schultze, J.L. Regulatory Dendritic Cells: There Is More than Just Immune Activation. Front. Immunol. 2012, 3, 274. [Google Scholar] [CrossRef]
- Poženel, P.; Zajc, K.; Švajger, U. Factor of Time in Dendritic Cell (DC) Maturation: Short-Term Activation of DCs Significantly Improves Type 1 Cytokine Production and T Cell Responses. J. Transl. Med. 2024, 22, 541. [Google Scholar] [CrossRef]
- Lionakis, M.S.; Drummond, R.A.; Hohl, T.M. Immune Responses to Human Fungal Pathogens and Therapeutic Prospects. Nat. Rev. Immunol. 2023, 23, 433–452. [Google Scholar] [CrossRef]
- Jellmayer, J.A.; Ferreira, L.S.; Manente, F.A.; Gonçalves, A.C.; Polesi, M.C.; Batista-Duharte, A.; Carlos, I.Z. Dectin-1 Expression by Macrophages and Related Antifungal Mechanisms in a Murine Model of Sporothrix schenckii sensu stricto Systemic Infection. Microb. Pathog. 2017, 110, 78–84. [Google Scholar] [CrossRef]
- Maia, D.C.G.; Gonçalves, A.C.; Ferreira, L.S.; Manente, F.A.; Portuondo, D.L.; Vellosa, J.C.R.; Polesi, M.C.; Batista-Duharte, A.; Carlos, I.Z. Response of Cytokines and Hydrogen Peroxide to Sporothrix schenckii Exoantigen in Systemic Experimental Infection. Mycopathologia 2016, 181, 207–215. [Google Scholar] [CrossRef]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The Master Regulator of Immunity to Infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef]
- Saraiva, M.; O’Garra, A. The Regulation of IL-10 Production by Immune Cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Iberg, C.A.; Hawiger, D. Natural and Induced Tolerogenic Dendritic Cells. J. Immunol. 2020, 204, 733–744. [Google Scholar] [CrossRef]
- Passeri, L.; Andolfi, G.; Bassi, V.; Russo, F.; Giacomini, G.; Laudisa, C.; Marrocco, I.; Cesana, L.; Di Stefano, M.; Fanti, L.; et al. Tolerogenic IL-10-Engineered Dendritic Cell-Based Therapy to Restore Antigen-Specific Tolerance in T Cell Mediated Diseases. J. Autoimmun. 2023, 138, 103051. [Google Scholar] [CrossRef]
- Martín-Fontecha, A.; Sebastiani, S.; Höpken, U.E.; Uguccioni, M.; Lipp, M.; Lanzavecchia, A.; Sallusto, F. Regulation of Dendritic Cell Migration to the Draining Lymph Node: Impact on T Lymphocyte Traffic and Priming. J. Exp. Med. 2003, 198, 615–621. [Google Scholar] [CrossRef]
- Ueno, K.; Urai, M.; Sadamoto, S.; Shinozaki, M.; Takatsuka, S.; Abe, M.; Otani, Y.; Yanagihara, N.; Shimizu, K.; Iwakura, Y.; et al. A Dendritic Cell-Based Systemic Vaccine Induces Long-Lived Lung-Resident Memory Th17 Cells and Ameliorates Pulmonary Mycosis. Mucosal Immunol. 2019, 12, 265–276. [Google Scholar] [CrossRef]
- da Silva, J.L.; Ikeda, M.A.K.; Albuquerque, R.C.; de Almeida, S.R.; Ferreira, K.S. Extracellular Vesicles from Dendritic Cells Protect Against Sporothrix brasiliensis Yeast Cells. Mycopathologia 2025, 190, 35. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.B.R.; Taira, C.L.; Dias, L.S.; Souza, A.C.O.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. Experimental Therapy of Paracoccidioidomycosis Using P10-Primed Monocyte-Derived Dendritic Cells Isolated from Infected Mice. Front. Microbiol. 2019, 10, 467954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellmayer, J.A.; Deus, A.F.d.; Curti Gonçalves, M.R.; Souza Ferreira, L.; Manente, F.A.; Pinho Caetano, L.S.; Piccineli, F.L.; Zamberço dos Reis Genari, T.; Saçaki, B.d.C.; Pavicic Catalan de Oliveira Campos, T.; et al. Dendritic Cell-Based Therapeutic Immunization Induces Th1/Th17 Responses and Reduces Fungal Burden in Experimental Sporotrichosis. Microorganisms 2025, 13, 2351. https://doi.org/10.3390/microorganisms13102351
Jellmayer JA, Deus AFd, Curti Gonçalves MR, Souza Ferreira L, Manente FA, Pinho Caetano LS, Piccineli FL, Zamberço dos Reis Genari T, Saçaki BdC, Pavicic Catalan de Oliveira Campos T, et al. Dendritic Cell-Based Therapeutic Immunization Induces Th1/Th17 Responses and Reduces Fungal Burden in Experimental Sporotrichosis. Microorganisms. 2025; 13(10):2351. https://doi.org/10.3390/microorganisms13102351
Chicago/Turabian StyleJellmayer, Juliana Aparecida, Adriana Fernandes de Deus, Matheus Ricardo Curti Gonçalves, Lucas Souza Ferreira, Francine Alessandra Manente, Larissa Silva Pinho Caetano, Fernanda Luiza Piccineli, Thais Zamberço dos Reis Genari, Beatriz da Cunha Saçaki, Tarcila Pavicic Catalan de Oliveira Campos, and et al. 2025. "Dendritic Cell-Based Therapeutic Immunization Induces Th1/Th17 Responses and Reduces Fungal Burden in Experimental Sporotrichosis" Microorganisms 13, no. 10: 2351. https://doi.org/10.3390/microorganisms13102351
APA StyleJellmayer, J. A., Deus, A. F. d., Curti Gonçalves, M. R., Souza Ferreira, L., Manente, F. A., Pinho Caetano, L. S., Piccineli, F. L., Zamberço dos Reis Genari, T., Saçaki, B. d. C., Pavicic Catalan de Oliveira Campos, T., Portuondo, D. L., Batista-Duharte, A., & Carlos, I. Z. (2025). Dendritic Cell-Based Therapeutic Immunization Induces Th1/Th17 Responses and Reduces Fungal Burden in Experimental Sporotrichosis. Microorganisms, 13(10), 2351. https://doi.org/10.3390/microorganisms13102351