In Vitro Probiotic Modulation of Specific Dietary Complex Sugar Consumption in Fecal Cultures in Infants
Abstract
1. Introduction
1.1. Influence of Breastfeeding and Formula Feeding on the Development of the Infant Gut Microbiome
1.2. Prebiotic and Probiotic Supplementation
1.3. Introduction of Complementary Foods
2. Materials and Methods
2.1. Strain and Fecal Samples
2.2. DNA Extraction, Sequencing, and Data Analysis
2.3. Culture Media and Conditions
2.4. 2′-Fucosyllactose Commercial Preparations
2.5. Screening of Co-Cultures from Different Fecal Microbiome Strains and B. bifidum in the Presence of Different Fibers and Food Extracts on PreBiome PlatesTM
2.6. Screening of Co-Cultures from Different Fecal Microbiome Strains and B. bifidum in the Presence of 2′-FL, Lactose, Fucose, Galactose, and Glucose
2.7. Statistical Analysis and Software
3. Results
3.1. Bacterial Communities in the Studied Fecal Samples
3.2. Co-Cultivation and Influence of B.bifidum on the Absorption of Prebiotic Substrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HMOs | Human milk oligosaccharides |
GOS | Galactooligosaccharides |
SCFAs | Short-chain fatty acids |
FF | Formula-fed |
FOS | Fructooligosaccharides |
2-FL | 2′-fucosyllactose |
References
- Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017, 66, 515–522. [Google Scholar] [CrossRef]
- Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome—A Potential Controller of Wellness and Disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [PubMed]
- Gritz, E.C.; Bhandari, V. The human neonatal gut microbiome: A brief review. Front. Pediatr. 2015, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front. Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef] [PubMed]
- Lugli, G.A.; Mancabelli, L.; Milani, C.; Fontana, F.; Tarracchini, C.; Alessandri, G.; van Sinderen, D.; Turroni, F.; Ventura, M. Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota. npj Biofilms Microbiomes 2023, 9, 25. [Google Scholar] [CrossRef]
- Laursen, M.F.; Bahl, M.I.; Michaelsen, K.F.; Licht, T.R. First Foods and Gut Microbes. Front. Microbiol. 2017, 8, 356. [Google Scholar] [CrossRef]
- Lawson, M.A.E.; O’Neill, I.J.; Kujawska, M.; Gowrinadh Javvadi, S.; Wijeyesekera, A.; Flegg, Z.; Chalklen, L.; Hall, L.J. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020, 14, 635–648. [Google Scholar] [CrossRef]
- Notarbartolo, V.; Giuffrè, M.; Montante, C.; Corsello, G.; Carta, M. Composition of Human Breast Milk Microbiota and Its Role in Children’s Health. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 194–210. [Google Scholar] [CrossRef]
- Catassi, G.; Aloi, M.; Giorgio, V.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024, 16, 400. [Google Scholar] [CrossRef]
- Borewicz, K.; Suarez-Diez, M.; Hechler, C.; Beijers, R.; de Weerth, C.; Arts, I.; Penders, J.; Thijs, C.; Nauta, A.; Lindner, C.; et al. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci. Rep. 2019, 9, 2434. [Google Scholar] [CrossRef]
- Dinleyici, M.; Barbieur, J.; Dinleyici, E.C.; Vandenplas, Y. Functional effects of human milk oligosaccharides (HMOs). Gut Microbes 2023, 15, 2186115. [Google Scholar] [CrossRef]
- Das, T.K.; Pradhan, S.; Chakrabarti, S.; Mondal, K.C.; Ghosh, K. Current status of probiotic and related health benefits. Appl. Food Res. 2022, 2, 100185. [Google Scholar] [CrossRef]
- Horigome, A.; Hisata, K.; Odamaki, T.; Iwabuchi, N.; Xiao, J.Z.; Shimizu, T. Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration. Front. Microbiol. 2021, 12, 610080. [Google Scholar] [CrossRef]
- Mugambi, M.N.; Musekiwa, A.; Lombard, M.; Young, T.; Blaauw, R. Probiotics, prebiotics infant formula use in preterm or low birth weight infants: A systematic review. Nutr. J. 2012, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Vendt, N.; Grünberg, H.; Tuure, T.; Malminiemi, O.; Wuolijoki, E.; Tillmann, V.; Sepp, E.; Korpela, R. Growth during the first 6 months of life in infants using formula enriched with Lactobacillus rhamnosus GG: Double-blind, randomized trial. J. Hum. Nutr. Diet. 2006, 19, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shimizu, T.; Hosaka, A.; Kaneko, N.; Ohtsuka, Y.; Yamashiro, Y. Effects of bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr. Int. 2004, 46, 509–515. [Google Scholar] [CrossRef]
- Abate, A.D.; Hassen, S.L.; Temesgen, M.M. Timely initiation of complementary feeding practices and associated factors among children aged 6–23 months in Dessie Zuria District, Northeast Ethiopia: A community-based cross-sectional study. Front. Pediatr. 2023, 11, 1062251. [Google Scholar] [CrossRef]
- Differding, M.K.; Benjamin-Neelon, S.E.; Hoyo, C.; Østbye, T.; Mueller, N.T. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol. 2020, 20, 56. [Google Scholar] [CrossRef]
- Andrews, P.; Johnson, R.J. Evolutionary basis for the human diet: Consequences for human health. J. Intern. Med. 2020, 287, 226–237. [Google Scholar] [CrossRef]
- Jiang, W.; Ling, Z.; Lin, X. Pyrosequencing Analysis of Oral Microbiota Shifting in Various Caries States in Childhood. Microb. Ecol. 2014, 67, 962–969. [Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Hoskinson, C.; Dai, D.L.Y.; Del Bel, K.L.; Becker, A.B.; Moraes, T.J.; Mandhane, P.J.; Finlay, B.B.; Simons, E.; Kozyrskyj, A.L.; Azad, M.B.; et al. Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease. Nat. Commun. 2023, 14, 4785. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- O’ Donnell, M.M.; Forde, B.M.; Neville, B.; Ross, P.R.; O’ Toole, P.W. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Factories 2011, 10, S12. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, H.; Xiang, H.; Wu, L.; Men, X.; Qi, C.; Chen, G.; Zhang, H.; Wang, Y.; Xian, M. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos. Curr. Microbiol. 2018, 75, 1306–1315. [Google Scholar] [CrossRef]
- Kostopoulos, I.; Elzinga, J.; Ottman, N.; Klievink, J.T.; Blijenberg, B.; Aalvink, S.; Boeren, S.; Mank, M.; Knol, J.; de Vos, W.M.; et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci. Rep. 2020, 10, 14330. [Google Scholar] [CrossRef] [PubMed]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef]
- Roger, L.C.; McCartney, A.L. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 2010, 156, 3317–3328. [Google Scholar] [CrossRef]
- Bergström, A.; Skov, T.H.; Bahl, M.I.; Roager, H.M.; Christensen, L.B.; Ejlerskov, K.T.; Mølgaard, C.; Michaelsen, K.F.; Licht, T.R. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 2014, 80, 2889–2900. [Google Scholar] [CrossRef]
- Thompson, A.L.; Monteagudo-Mera, A.; Cadenas, M.B.; Lampl, M.L.; Azcarate-Peril, M.A. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front. Cell. Infect. Microbiol. 2015, 5, 3. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.J.; Cloran, S.J.; Fleith, M.; Van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Healey, G.; Murphy, R.; Butts, C.; Brough, L.; Whelan, K.; Coad, J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 2018, 119, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Costabile, A.; Kolida, S.; Klinder, A.; Gietl, E.; Buerlein, M.; Frohberg, C.; Landschtze, V.; Gibson, G.R. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br. J. Nutr. 2010, 104, 1007–1017. [Google Scholar] [CrossRef]
- Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 2015, 114, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Tanihiro, R.; Sakano, K.; Oba, S.; Nakamura, C.; Ohki, K.; Hirota, T.; Sugiyama, H.; Ebihara, S.; Nakamura, Y. Effects of Yeast Mannan Which Promotes Beneficial Bacteroides on the Intestinal Environment and Skin Condition: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2020, 12, 3673. [Google Scholar] [CrossRef]
- Salli, K.; Anglenius, H.; Hirvonen, J.; Hibberd, A.A.; Ahonen, I.; Saarinen, M.T.; Tiihonen, K.; Maukonen, J.; Ouwehand, A.C. The effect of 2′-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci. Rep. 2019, 9, 13232. [Google Scholar] [CrossRef]
- Zúñiga, M.; Monedero, V.; Yebra, M.J. Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol. 2018, 9, 1917. [Google Scholar] [CrossRef]
- He, Z.; Yang, B.; Liu, X.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Short communication: Genotype-phenotype association analysis revealed different utilization ability of 2′-fucosyllactose in Bifidobacterium genus. J. Dairy Sci. 2021, 104, 1518–1523. [Google Scholar] [CrossRef]
- Salli, K.; Hirvonen, J.; Siitonen, J.; Ahonen, I.; Anglenius, H.; Maukonen, J. Selective Utilization of the Human Milk Oligosaccharides 2′-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria. J. Agric. Food Chem. 2021, 69, 170–182. [Google Scholar] [CrossRef]
- Tannock, G.W.; Lawley, B.; Munro, K.; Pathmanathan, S.G.; Zhou, S.J.; Makrides, M.; Gibson, R.A.; Sullivan, T.; Prosser, C.G.; Lowry, D.; et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl. Environ. Microbiol. 2013, 79, 3040–3048. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species. Sci. Rep. 2022, 12, 4143. [Google Scholar] [CrossRef]
- Kitaoka, M. Bifidobacterial Enzymes Involved in the Metabolism of Human Milk Oligosaccharides. Adv. Nutr. 2012, 3, 422S–429S. [Google Scholar] [CrossRef] [PubMed]
- Asakuma, S.; Hatakeyama, E.; Urashima, T.; Yoshida, E.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Ashida, H.; Hirose, J.; Kitaoka, M. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef] [PubMed]
Carbon Source | B. bifidum | Co-Culture | Fecal Microbiome 1 |
---|---|---|---|
Fibersol-2 | - | - | - |
Benefiber | - | 0.11 ± 0.09 | 0.22 ± 0.06 |
Oat Fiber Plus | - | - | - |
Apple (dietary fiber) | - | 0.16 ± 0.24 | 0.13 ± 0.10 |
Full Fat Soya (dietary fiber) | - | 0.12 ± 0.25 | 0.21 ± 0.11 |
Haricot beans (dietary fiber) | - | 0.18 ± 0.08 | 0.22 ± 0.27 |
Fiberpro 70L | - | - | - |
Nutriose® FM 06 | - | 0.31 ± 0.14 | 0.42 ± 0.05 |
Fiberpro FOS 83 | 0.10 ± 0.03 | 0.21 ± 0.13 | 0.19 ± 0.28 |
Nutraflora, Prebiotic fiber | 0.13 ± 0.06 | 0.45 ± 0.19 | 0.40 ± 0.08 |
Fiberpro FOS 83 + 0.1% glucose | 0.10 ± 0.07 | 0.31 ± 0.17 | 0.45 ± 0.41 |
Nutraflora, Prebiotic fiber + 0.1% glucose | 0.15 ± 0.13 | 0.41 ± 0.21 | 0.29 ± 0.30 |
GastroThera | - | - | - |
Okra Extract Powder | 0.11 ± 0.27 | 0.11 ± 0.25 | - |
PUREFRUIT Monk Fruit Extract | 0.11 ± 0.34 | 0.55 ± 0.12 | 0.48 ± 0.19 |
Mussel tissue (trace elements) | 0.10 ± 0.09 | 0.30 ± 0.10 | 0.23 ± 0.37 |
White cabbage (trace elements) | - | - | - |
Maize flour (deoxynivalenol, blank) | - | - | - |
PUREFRUIT Monk Fruit Extract + 0.1% glucose | 0.13 ± 0.04 | 0.54 ± 0.30 | 0.48 ± 0.11 |
Mussel tissue (trace elements) + 0.1% glucose | - | 0.44 ± 0.26 | 0.48 ± 0.31 |
Baobab | - | - | - |
Brussels sprouts (vitamins) | - | - | - |
Inavea BAOBAB ACACIA | - | - | - |
Quercetin | - | - | - |
Prebiotic Bifido Boost with Prebiotic Xylooligosaccharide (XOS) + 0.1% glucose | - | 0.29 ± 0.30 | 0.32 ± 0.11 |
Beta-Sitosterol, Phytosterols capsules | - | - | - |
Prebiotic Bifido Boost with PreticX Xylooligosaccharide (XOS) | - | 0.51 ± 0.32 | 0.49 ± 0.07 |
Zerose® Erythritol Sweetener | - | - | - |
Carbon Source | B. bifidum | Co-Culture | Fecal Microbiome 2 |
---|---|---|---|
Fibersol-2 | - | - | - |
Benefiber | - | - | - |
Oat Fiber Plus | - | - | - |
Apple (dietary fiber) | - | 0.28 ± 0.21 | 0.23 ± 0.10 |
Full Fat Soya (dietary fiber) | - | 0.14 ± 0.13 | 0.12 ± 0.19 |
Haricot beans (dietary fiber) | - | 0.14 ± 0.08 | 0.14 ± 0.21 |
Fiberpro 70L | - | - | - |
Nutriose® FM 06 | - | 0.21 ± 0.09 | 0.18 ± 0.01 |
Fiberpro FOS 83 | 0.10 ± 0.03 | 0.20 ± 0.14 | 0.19 ± 0.31 |
Nutraflora, Prebiotic fiber | 0.13 ± 0.06 | 0.28 ± 0.15 | 0.40 ± 0.22 |
Fiberpro FOS 83 + 0.1% glucose | 0.10 ± 0.07 | 0.29 ± 0.12 | 0.14 ± 0.51 |
Nutraflora, Prebiotic fiber + 0.1% glucose | 0.15 ± 0.13 | 0.43 ± 0.24 | 0.33 ± 0.31 |
GastroThera | - | - | - |
Okra Extract Powder | 0.11 ± 0.27 | 0.11 ± 0.25 | - |
PUREFRUIT Monk Fruit Extract | 0.11 ± 0.34 | 0.32 ± 0.13 | 0.47 ± 0.10 |
Mussel tissue (trace elements) | 0.10 ± 0.09 | 0.35 ± 0.09 | 0.24 ± 0.07 |
White cabbage (trace elements) | - | - | - |
Maize flour (deoxynivalenol, blank) | - | - | - |
PUREFRUIT Monk Fruit Extract + 0.1% glucose | 0.13 ± 0.04 | 0.57 ± 0.31 | 0.51 ± 0.12 |
Mussel tissue (trace elements) + 0.1% glucose | - | 0.43 ± 0.20 | 0.52 ± 0.43 |
Baobab | - | - | - |
Brussels sprouts (vitamins) | - | 0.21 ± 0.09 | 0.21 ± 0.07 |
Inavea BAOBAB ACACIA | - | - | - |
Quercetin | - | - | - |
Prebiotic Bifido Boost with PrebioticX Xylooligosaccharide (XOS) + 0.1% glucose | - | 0.37 ± 0.34 | 0.42 ± 0.10 |
Beta-Sitosterol, Phytosterols capsules | - | - | - |
Prebiotic Bifido Boost with PreticX Xylooligosaccharide (XOS) | - | 0.52 ± 0.33 | 0.38 ± 0.07 |
Zerose® Erythritol Sweetener | - | - | - |
Carbon Source | B. bifidum | Co-Culture | Fecal Microbiome 3 |
---|---|---|---|
Fibersol-2 | - | 0.14 ± 0.12 | 0.12 ± 0.08 |
Benefiber | - | 0.14 ± 0.11 | 0.13 ± 0.07 |
Oat Fiber Plus | - | - | - |
Apple (dietary fiber) | - | 0.18 ± 0.24 | 0.12 ± 0.14 |
Full Fat Soya (dietary fiber) | - | 0.17 ± 0.12 | 0.13 ± 0.16 |
Haricots beans (dietary fiber) | - | 0.15 ± 0.14 | 0.13 ± 0.24 |
Fiberpro 70L | - | 0.13 ± 0.05 | 0.11 ± 0.01 |
Nutriose® FM 06 | - | 0.20 ± 0.07 | 0.14 ± 0.07 |
Fiberpro FOS 83 | 0.10 ± 0.03 | 0.24 ± 0.10 | 0.28 ± 0.32 |
Nutraflora, Prebiotic fiber | 0.13 ± 0.06 | 0.28 ± 0.12 | 0.39 ± 0.21 |
Fiberpro FOS 83 + 0.1% glucose | 0.10 ± 0.07 | 0.31 ± 0.08 | 0.47 ± 0.25 |
Nutraflora, Prebiotic fiber + 0.1% glucose | 0.15 ± 0.13 | 0.45 ± 0.25 | 0.36 ± 0.34 |
GastroThera | - | 0.23 ± 0.24 | 0.22 ± 0.27 |
Okra Extract Powder | 0.11 ± 0.27 | 0.45 ± 0.27 | 0.40 ± 0.45 |
PUREFRUIT Monk Fruit Extract | 0.11 ± 0.34 | 0.57 ± 0.32 | 0.49 ± 0.09 |
Mussel tissue (trace elements) | 0.10 ± 0.09 | 0.36 ± 0.08 | 0.29 ± 0.07 |
White cabbage (trace elements) | - | 0.33 ± 0.22 | 0.31 ± 0.06 |
Maize flour (deoxynivalenol, blank) | - | 0.21 ± 0.51 | 0.15 ± 0.02 |
PUREFRUIT Monk Fruit Extract + 0.1% glucose | 0.13 ± 0.04 | 0.61 ± 0.34 | 0.52 ± 0.14 |
Mussel tissue (trace elements) + 0.1% glucose | - | 0.46 ± 0.21 | 0.52 ± 0.41 |
Baobab | - | 0.40 ± 0.02 | 0.32 ± 0.03 |
Brussels sprouts (vitamins) | - | 0.28 ± 0.09 | 0.28 ± 0.04 |
inavea BAOBAB ACACIA | - | 0.13 ± 0.06 | 0.11 ± 0.24 |
Quercetin | - | 0.13 ± 0.12 | 0.12 ± 0.34 |
Prebiotic Bifido Boost with PrebioticX Xylooligosaccharide (XOS) + 0.1% glucose | - | 0.49 ± 0.34 | 0.43 ± 0.08 |
Beta-Sitosterol, Phytosterols capsules | - | 0.15 ± 0.32 | 0.13 ± 0.06 |
Prebiotic Bifido Boost with PreticX Xylooligosaccharide (XOS) | - | 0.47 ± 0.36 | 0.34 ± 0.04 |
Zerose® Erythritol Sweetener | - | 0.13 ± 0.21 | 0.1 ± 0.08 |
Carbon Source | B. bifidum ATCC 29521 | Co-Culture B. bifidum + Microbiome A1 | Fecal Microbiome A1 |
---|---|---|---|
2′-fucosyllactose | 0.89 ± 0.12 | 1.3 ± 0.14 | 1.1 ± 0.09 |
Fucose | 0.30 ± 0.15 | 0.52 ± 0.06 | 0.63 ± 0.08 |
Galactose | 0.43 ± 0.08 | 1.17 ± 0.07 | 1.29 ± 0.09 |
Glucose | 1.12 ± 0.09 | 1.49 ±0.1 | 1.52 ± 0.05 |
Lactose | 1.15 ± 0.13 | 1.16 ±0.03 | 1.20 ± 0.04 |
Carbon Source | B. bifidum ATCC 29521 | Co-Culture B. bifidum + microbiome B2 | Fecal microbiome B2 |
2′-fucosyllactose | 0.89 ± 0.12 | 1.4 ± 0.05 | 1.3 ± 0.09 |
Fucose | 0.29 ± 0.15 | 0.80 ± 0.04 | 0.85 ± 0.08 |
Galactose | 0.45 ± 0.08 | 1.15 ± 0.02 | 1.1 ± 0.03 |
Glucose | 1.12 ± 0.09 | 1.3 ± 0.04 | 1.4 ± 0.1 |
Lactose | 1.15 ± 0.13 | 1.1 ± 0.04 | 1.3 ± 0.03 |
Carbon Source | B. bifidum ATCC 29521 | Co-Culture B. bifidum + microbiome C3 | Fecal microbiome C3 |
2′-fucosyllactose | 0.89 ± 0.12 | 1.3 ± 0.11 | 0.9 ± 0.09 |
Fucose | 0.29 ± 0.15 | 0.87 ± 0.08 | 0.74 ± 0.03 |
Galactose | 0.45 ± 0.08 | 1.2 ± 0.01 | 1.5 ± 0.0 |
Glucose | 1.12 ± 0.09 | 1.58 ± 0.13 | 1.6 ± 0.09 |
Lactose | 1.15 ± 0.13 | 1.20 ± 0.12 | 1.32 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollova, D.; Baev, V.; Iliev, I. In Vitro Probiotic Modulation of Specific Dietary Complex Sugar Consumption in Fecal Cultures in Infants. Microorganisms 2025, 13, 2352. https://doi.org/10.3390/microorganisms13102352
Mollova D, Baev V, Iliev I. In Vitro Probiotic Modulation of Specific Dietary Complex Sugar Consumption in Fecal Cultures in Infants. Microorganisms. 2025; 13(10):2352. https://doi.org/10.3390/microorganisms13102352
Chicago/Turabian StyleMollova, Daniela, Vesselin Baev, and Ilia Iliev. 2025. "In Vitro Probiotic Modulation of Specific Dietary Complex Sugar Consumption in Fecal Cultures in Infants" Microorganisms 13, no. 10: 2352. https://doi.org/10.3390/microorganisms13102352
APA StyleMollova, D., Baev, V., & Iliev, I. (2025). In Vitro Probiotic Modulation of Specific Dietary Complex Sugar Consumption in Fecal Cultures in Infants. Microorganisms, 13(10), 2352. https://doi.org/10.3390/microorganisms13102352