Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia
Abstract
:1. Introduction
2. Arenavirus
3. Hantavirus
4. Mayaro Virus
5. Oropouche Virus
6. Anaplasma
7. Bartonella
8. Relapsing Fever Group Borrelia
9. Coxiella burnetii
10. Ehrlichia
11. Orientia
12. Rickettsia
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rangel-Churio, J.O. La biodiversidad de Colombia: Significado y distribución regional. Acad. Colomb. Cienc. Exactas Físicas Y Nat. 2015, 39, 176–200. [Google Scholar] [CrossRef]
- Pabón, J.D. El cambio climático global y su manifestación en Colombia. Cuad. Geogr. Rev. Colomb. Geogr. 2003, 12, 111–119. [Google Scholar]
- Villegas Vélez, Á.A.; Castrillón Gallego, C. Territorio, enfermedad y población en la producción de la geografía tropical colombiana, 1872–1934. Hist. Crit. 2006, 32, 94–117. [Google Scholar] [CrossRef]
- Bottieau, E.; Yansouni, C.P. Fever in the tropics: The ultimate clinical challenge? Clin. Microbiol. Infect. 2018, 24, 806–807. [Google Scholar] [CrossRef] [PubMed]
- Maze, M.J.; Bassat, Q.; Feasey, N.A.; Mandomando, I.; Musicha, P.; Crump, J.A. The epidemiology of febrile illness in sub-Saharan Africa: Implications for diagnosis and management. Clin. Microbiol. Infect. 2018, 24, 808–814. [Google Scholar] [CrossRef]
- Moreira, J.; Bressan, C.S.; Brasil, P.; Siqueira, A.M. Epidemiology of acute febrile illness in Latin America. Clin. Microbiol. Infect. 2018, 24, 827–835. [Google Scholar] [CrossRef]
- Wangdi, K.; Kasturiaratchi, K.; Nery, S.V.; Lau, C.L.; Gray, D.J.; Clements, A.C.A. Diversity of infectious aetiologies of acute undifferentiated febrile illnesses in south and Southeast Asia: A systematic review. BMC Infect. Dis. 2019, 19, 577. [Google Scholar] [CrossRef]
- Martiniano, N.O.M.; Sato, T.P.; Vizzoni, V.F.; Ventura, S.F.; Oliveira, S.V.; Amorim, M.; Gazêta, G.S. A new focus of spotted fever caused by Rickettsia parkeri in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2022, 64, e222022. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, T.; Martínez-Valdebenito, C.; Acosta-Jamett, G.; Jiang, J.; Richards, A.L.; Abarca, K. Scrub Typhus in Continental Chile, 2016–2018. Emerg. Infect. Dis. 2019, 25, 1214–1217. [Google Scholar] [CrossRef]
- Acosta, J.; Urquijo, L.; Díaz, A.; Sepúlveda, M.; Mantilla, G.; Heredia, D.; González, M.; Parra, E.; Rey, G.; Múnera, G.; et al. Brote de rickettsiosis en Necoclí, Antioquia, febrero-marzo de 2006. Inf. Quinc. Epidemiol. Nac. 2006, 11, 177–192. [Google Scholar]
- Hallam, S.J.; Koma, T.; Maruyama, J.; Paessler, S. Review of Mammarenavirus Biology and Replication. Front. Microbiol. 2018, 9, 1751. [Google Scholar] [CrossRef]
- Radoshitzky, S.R.; de la Torre, J.C. Human Pathogenic Arenaviruses (Arenaviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 2, pp. 507–517. [Google Scholar] [CrossRef]
- Petersen, L.R.; Ksiazek, T.G. Zoonotic Viruses. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1493–1508. [Google Scholar]
- Bonthius, D.J. Lymphocytic choriomeningitis virus: An underrecognized cause of neurologic disease in the fetus, child, and adult. Semin. Pediatr. Neurol. 2012, 19, 89–95. [Google Scholar] [CrossRef] [PubMed]
- McCormick, J.B. Lassa, Junin, Machupo and Guanarito Viruses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.M.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 203–212. [Google Scholar]
- Fukushi, S.; Tani, H.; Yoshikawa, T.; Saijo, M.; Morikawa, S. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses 2012, 4, 2097–2114. [Google Scholar] [CrossRef] [PubMed]
- Happi, A.N.; Happi, C.T.; Schoepp, R.J. Lassa fever diagnostics: Past, present, and future. Curr. Opin. Virol. 2019, 37, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Faccini-Martínez, Á.A.; Calixto, O.J.; Hidalgo, M. Bolivian hemorrhagic fever: A narrative review. Travel. Med. Infect. Dis. 2021, 40, 102001. [Google Scholar] [CrossRef]
- Trapido, H.; Sanmartín, C. Pichindé virus, a new virus of the Tacaribe group from Colombia. Am. J. Trop. Med. Hyg. 1971, 20, 631–641. [Google Scholar] [CrossRef]
- Ruelas, D.; Pacheco, V.; Inche, B.; Tinoco, N. A preliminary review of Nephelomys albigularis (Tomes, 1860) (Rodentia: Cricetidae), with the description of a new species from the Peruvian montane forests. Zootaxa 2021, 5027, 175–210. [Google Scholar] [CrossRef]
- Arroyave, E.; Londoño, A.F.; Quintero, J.C.; Agudelo-Flórez, P.; Arboleda, M.; Díaz, F.J.; Rodas, J.D. Etiología y caracterización epidemiológica del síndrome febril no palúdico en tres municipios del Urabá antioqueño, Colombia. Biomedica 2013, 33, 99–107. [Google Scholar]
- Restrepo, B.; Rodas, J.D.; Montoya-Ruiz, C.; Zuluaga, A.M.; Parra-Henao, G.; Agudelo-Flórez, P. Evidencia serológica retrospectiva de infecciones por Leptospira spp., dengue, hantavirus y arenavirus en indígenas Emberá-Katío, Colombia. Rev. Chil. Infectol. 2016, 33, 472–473. [Google Scholar] [CrossRef]
- Bolaños, A.; Montoya-Ruiz, C.; Perez-Peréz, J.C.; Rodas, J.D.; Mattar, S. Seroprevalence of arenavirus and hantavirus in indigenous populations from the Caribbean, Colombia. Rev. Soc. Bras. Med. Trop. 2019, 53, e201901322019. [Google Scholar] [CrossRef]
- Guzmán, C.; Mattar, S.; Levis, S.; Pini, N.; Figueiredo, T.; Mills, J.; Salazar-Bravo, J. Prevalence of antibody to hantaviruses in humans and rodents in the Caribbean region of Colombia determined using Araraquara and Maciel virus antigens. Mem. Inst. Oswaldo Cruz. 2013, 108, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Barrera, S.; Martínez, S.; Tique-Salleg, V.; Miranda, J.; Guzmán, C.; Mattar, S. Seroprevalence of Hantavirus, Rickettsia y Chikungunya in the indigenous population of Tuchín, Córdoba. Infectio 2015, 19, 75–82. [Google Scholar] [CrossRef]
- Máttar, S.; Parra, M. Serologic evidence of hantavirus infection in humans, Colombia. Emerg. Infect. Dis. 2004, 10, 2263–2264. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.; Mattar, S.; Rodriguez, D.; Tique, V.; Rodríguez, I. First serological evidence of hantavirus infection in humans from the Orinoquia region of Colombia. Braz. J. Infect. Dis. 2016, 20, 507–508. [Google Scholar] [CrossRef]
- Prias Landinez, E.; Bernal Cubides, C.; Vargas de Torres, S.; Romero Leon, M. Encuesta serológica de virus transmitidos por artrópodos. Boletín Oficina Sanit. Panamericana 1970, 68, 134–141. [Google Scholar]
- Gil-Mora, J.; Acevedo-Gutiérrez, L.Y.; Betancourt-Ruiz, P.L.; Martínez-Diaz, H.C.; Fernández, D.; Bopp, N.E.; Olaya-Másmela, L.A.; Bolaños, E.; Benavides, E.; Villasante-Tezanos, A.; et al. Arbovirus Antibody Seroprevalence in the Human Population from Cauca, Colombia. Am. J. Trop. Med. Hyg. 2022, 107, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Groot, H. Estudios sobre virus transmitidos por artrópodos en Colombia. Rev. Acad. Colomb. Cien Exac Fis. Nat. 1964, 12, 3–23. [Google Scholar]
- Hidalgo, M.; Castañeda, E.; Méndez, J.; Travassos da Rosa, A.; Valbuena, G. Detección de anticuerpos contra arbovirus y rickettsias en sueros provenientes del programa centinela de entidades febriles, 2000–2004. Inf. Quinc. Epidemiol. Nac. 2007, 12, 81–96. [Google Scholar]
- Evans, A.S.; Casals, J.; Opton, E.M.; Borman, E.K.; Levine, L.; Cuadrado, R.R. A nationwide serum survey of Colombian military recruits, 1966. I. Description of sample and antibody patterns with arboviruses, polioviruses, respiratory viruses tetanus, and treponematosis. Am. J. Epidemiol. 1969, 90, 292–303. [Google Scholar] [CrossRef]
- Ciuoderis, K.A.; Berg, M.G.; Perez, L.J.; Hadji, A.; Perez-Restrepo, L.S.; Aristizabal, L.C.; Forberg, K.; Yamaguchi, J.; Cardona, A.; Weiss, S.; et al. Oropouche virus as an emerging cause of acute febrile illness in Colombia. Emerg. Microbes Infect. 2022, 11, 2645–2657. [Google Scholar] [CrossRef]
- Mattar, S.; Guzman, C.; Arrazola, J.; Soto, E.; Barrios, J.; Pini, N.; Levis, S.; Salazar-Bravo, J.; Mills, J.N. Antibody to arenaviruses in rodents, Caribbean Colombia. Emerg. Infect. Dis. 2011, 17, 1315–1317. [Google Scholar] [CrossRef]
- Rodríguez-Morales, A.J.; Bonilla-Aldana, D.K.; Risquez, A.; Paniz-Mondolfi, A.; Suárez, J.A. Should we be concerned about Venezuelan hemorrhagic fever?—A reflection on its current situation in Venezuela and potential impact in Latin America amid the migration crisis. New Microbes New Infect. 2021, 44, 100945. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Montoya-Ruíz, C.; Faccini-Martínez, Á.A.; Rodas, J.D. An updated review and current challenges of Guanarito virus infection, Venezuelan hemorrhagic fever. Arch. Virol. 2022, 167, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Castellar, A.; Guevara, M.; Rodas, J.D.; Londoño, A.F.; Arroyave, E.; Díaz, F.J.; Levis, S.; Blanco, P.J. Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo, Sucre, Colombia. Biomedica 2017, 37, 75–85. [Google Scholar]
- Munir, N.; Jahangeer, M.; Hussain, S.; Mahmood, Z.; Ashiq, M.; Ehsan, F.; Akram, M.; Ali Shah, S.M.; Riaz, M.; Sana, A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin. Exp. Pharm. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Londoño, A.F.; Levis, S.; Rodas, J.D. Hantavirus como agentes emergentes de importancia en Suramérica. Biomedica 2011, 31, 451–464. [Google Scholar] [CrossRef]
- Avšič-Županc, T.; Saksida, A.; Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 2019, 21S, e6–e16. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef]
- Llah, S.T.; Mir, S.; Sharif, S.; Khan, S.; Mir, M.A. Hantavirus induced cardiopulmonary syndrome: A public health concern. J. Med. Virol. 2018, 90, 1003–1009. [Google Scholar] [CrossRef]
- Mattar, S.; Guzmán, C.; Figueiredo, L.T. Diagnosis of hantavirus infection in humans. Expert. Rev. Anti Infect. Ther. 2015, 13, 939–946. [Google Scholar] [CrossRef]
- Pini, N. Hantavirus pulmonary syndrome in Latin America. Curr. Opin. Infect. Dis. 2004, 17, 427–431. [Google Scholar] [CrossRef]
- Puerta, H.; Cantillo, C.; Mills, J.; Hjelle, B.; Salazar-Bravo, J.; Mattar, S. Hantavirus del Nuevo Mundo. Ecología y epidemiología de un virus emergente en Latinoamérica. Medicina 2006, 66, 343–356. [Google Scholar]
- Figueiredo, L.T.; Souza, W.M.; Ferrés, M.; Enria, D.A. Hantaviruses and cardiopulmonary syndrome in South America. Virus Res. 2014, 187, 43–54. [Google Scholar] [CrossRef]
- Mattar, S.; Garzon, D.; Tadeu, L.; Faccini-Martínez, A.A.; Mills, J.N. Serological diagnosis of hantavirus pulmonary syndrome in a febrile patient in Colombia. Int. J. Infect. Dis. 2014, 25, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Mattar, S.; Tique, V.; Miranda, J.; Montes, E.; Garzon, D. Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. J. Infect. Public. Health 2017, 10, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Faccini-Martinez, Á.A. Seoul hantavirus could be an etiology of acute undifferentiated febrile illness in Colombia? Rev. MVZ Cordoba 2021, 26, 1–3. [Google Scholar]
- Alemán, A.; Iguarán, H.; Puerta, H.; Cantillo, C.; Mills, J.; Ariz, W.; Mattar, S. Primera evidencia serológica de infección por Hantavirus en roedores, en Colombia. Rev. Salud Publica 2006, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Londoño, A.F.; Díaz, F.J.; Agudelo-Flórez, P.; Levis, S.; Rodas, J.D. Genetic evidence of hantavirus infections in wild rodents from northwestern Colombia. Vector Borne Zoonotic Dis. 2011, 11, 701–708. [Google Scholar] [CrossRef]
- Blanco, P.; Arroyo, S.; Corrales, H.; Pérez, J.; Álvarez, L.; Castellar, A. Evidencia serológica de infección por hantavirus (Bunyaviridae: Hantavirus) en roedores del Departamento de Sucre, Colombia. Rev. Salud Publica 2012, 14, 755–764. [Google Scholar]
- Montoya-Ruiz, C.; Cajimat, M.N.; Milazzo, M.L.; Diaz, F.J.; Rodas, J.D.; Valbuena, G.; Fulhorst, C.F. Phylogenetic Relationship of Necoclí Virus to Other South American Hantaviruses (Bunyaviridae: Hantavirus). Vector Borne Zoonotic Dis. 2015, 15, 438–445. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rodríguez, Y.; Pacheco, Y.; Anaya, J.M.; Ramírez-Santana, C. Mayaro: An emerging viral threat? Emerg. Microbes Infect. 2018, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Mohammed, A.; Jayaraman, J.; Nandram, N.; Feng, R.S.; Lezcano, R.D.; Seeramsingh, R.; Daniel, B.; Lovin, D.D.; Severson, D.W.; et al. Changing patterns in the distribution of the Mayaro virus vector Haemagogus species in Trinidad, West Indies. Acta Trop. 2019, 199, 105108. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.N.; Carvalho, F.D.; De Mendonça, S.F.; Rocha, M.N.; Moreira, L.A. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl. Trop. Dis. 2020, 14, e00075182020. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.L.A.; Fonseca, B.A.L.D. Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? Braz. J. Infect. Dis. 2017, 21, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Murray, K.O. Dengue, West Nile virus, chikungunya, Zika-and now Mayaro? PLoS Negl. Trop. Dis. 2017, 11, e00054622017. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Freitas, R.B.; Travassos da Rosa, J.F.; Gabbay, Y.B.; Mello, W.A.; LeDuc, J.W. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. Trop. Med. Hyg. 1981, 30, 674–681. [Google Scholar] [CrossRef]
- Santiago, F.W.; Halsey, E.S.; Siles, C.; Vilcarromero, S.; Guevara, C.; Silvas, J.A.; Ramal, C.; Ampuero, J.S.; Aguilar, P.V. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response. PLoS Negl. Trop. Dis. 2015, 9, e00041042015. [Google Scholar] [CrossRef]
- Terzian, A.C.; Auguste, A.J.; Vedovello, D.; Ferreira, M.U.; da Silva-Nunes, M.; Sperança, M.A.; Suzuki, R.B.; Juncansen, C.; Araújo, J.P., Jr.; Weaver, S.C.; et al. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am. J. Trop. Med. Hyg. 2015, 92, 401–404. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Rojas, A.; Mohamed-Hadley, A.; de Guillén, Y.A.; Pinsky, B.A. Real-time RT-PCR for Mayaro virus detection in plasma and urine. J. Clin. Virol. 2018, 98, 1–4. [Google Scholar] [CrossRef]
- Figueiredo, L.T.; Nogueira, R.M.; Cavalcanti, S.M.; Schatzmayr, H.; da Rosa, A.T. Study of two different enzyme immunoassays for the detection of Mayaro virus antibodies. Mem. Inst. Oswaldo Cruz. 1989, 84, 303–307. [Google Scholar] [CrossRef]
- Fumagalli, M.J.; de Souza, W.M.; Romeiro, M.F.; de Souza Costa, M.C.; Slhessarenko, R.D.; Figueiredo, L.T.M. Development of an Enzyme-Linked Immunosorbent Assay to Detect Antibodies Targeting Recombinant Envelope Protein 2 of Mayaro Virus. J. Clin. Microbiol. 2019, 57, e01892-18. [Google Scholar] [CrossRef] [PubMed]
- Groot, H.; Morales, A.; Vidales, H. Virus isolations from forest mosquitoes in San Vicente de Chucuri, Colombia. Am. J. Trop. Med. Hyg. 1961, 10, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Marín, B.S.; Gandica, I.D.; Aguirre-Obando, O.A. The Mayaro virus and its potential epidemiological consequences in Colombia: An exploratory biomathematics analysis. Parasit. Vectors 2020, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Kantor, A.M.; Lin, J.; Wang, A.; Thompson, D.C.; Franz, A.W.E. Infection Pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and Transmission Potential of the Virus in Mixed Infections with Chikungunya Virus. J. Med. Entomol. 2019, 56, 832–843. [Google Scholar] [CrossRef]
- Rodríguez-Morales, A.J.; Paniz-Mondolfi, A.E.; Villamil-Gómez, W.E.; Navarro, J.C. Mayaro, Oropouche and Venezuelan Equine Encephalitis viruses: Following in the footsteps of Zika? Travel. Med. Infect. Dis. 2017, 15, 72–73. [Google Scholar] [CrossRef]
- Romero-Alvarez, D.; Escobar, L.E. Oropouche fever, an emergent disease from the Americas. Microbes Infect. 2018, 20, 135–146. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Gomes, M.L.; LeDuc, J.W.; Hoch, A.L. Transmission of Oropouche virus from man to hamster by the midge Culicoides paraensis. Science 1982, 215, 1251–1253. [Google Scholar] [CrossRef]
- Gibrail, M.M.; Fiaccadori, F.S.; Souza, M.; Almeida, T.N.; Chiang, J.O.; Martins, L.C.; Ferreira, M.S.; Cardoso, D.D. Detection of antibodies to Oropouche virus in non-human primates in Goiânia City, Goiás. Rev. Soc. Bras. Med. Trop. 2016, 49, 357–360. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Franks, A.; Papadopoulou, C. Oropouche Fever: A Review. Viruses 2018, 10, 175. [Google Scholar] [CrossRef]
- Anderson, C.R.; Spence, L.; Downs, W.G.; Aitken, T.H. Oropouche virus: A new human disease agent from Trinidad, West Indies. Am. J. Trop. Med. Hyg. 1961, 10, 574–578. [Google Scholar] [CrossRef]
- Travassos da Rosa, J.F.; de Souza, W.M.; Pinheiro, F.P.; Figueiredo, M.L.; Cardoso, J.F.; Acrani, G.O.; Nunes, M.R.T. Oropouche Virus: Clinical, Epidemiological, and Molecular Aspects of a Neglected Orthobunyavirus. Am. J. Trop. Med. Hyg. 2017, 96, 1019–1030. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Rocha, A.G.; Freitas, R.B.; Ohana, B.A.; Travassos da Rosa, A.P.; Rogério, J.S.; Linhares, A.C. Meningite associada às infecções por vírus Oropouche. Rev. Inst. Med. Trop. Sao Paulo 1982, 24, 246–251. [Google Scholar]
- Gómez-Camargo, D.E.; Egurrola-Pedraza, J.A.; Cruz, C.D.; Popuche, D.; Ochoa-Díaz, M.M.; Guevara, C.; Silva, M.; Abente, E.J.; Ampuero, J.S. Evidence of Oropouche Orthobunyavirus Infection, Colombia, 2017. Emerg. Infect. Dis. 2021, 27, 1756–1758. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Cabezas-Cruz, A. The genus Anaplasma: New challenges after reclassification. Rev. Sci. Tech. 2015, 34, 577–586. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.C.; Ma, L.; Jia, N.; Jiang, B.G.; Jiang, R.R.; Huo, Q.B.; Wang, Y.W.; Liu, H.B.; Chu, Y.L.; et al. Human infection with a novel tick-borne Anaplasma species in China: A surveillance study. Lancet Infect. Dis. 2015, 15, 663–670. [Google Scholar] [CrossRef]
- Ismail, N.; McBride, J.W. Tick-Borne Emerging Infections: Ehrlichiosis and Anaplasmosis. Clin. Lab. Med. 2017, 37, 317–340. [Google Scholar] [CrossRef] [PubMed]
- Bakken, J.S.; Dumler, J.S. Human granulocytic anaplasmosis. Infect. Dis. Clin. North. Am. 2015, 29, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Bloch, K.C.; McBride, J.W. Human ehrlichiosis and anaplasmosis. Clin. Lab. Med. 2010, 30, 261–292. [Google Scholar] [CrossRef]
- Dahlgren, F.S.; Mandel, E.J.; Krebs, J.W.; Massung, R.F.; McQuiston, J.H. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am. J. Trop. Med. Hyg. 2011, 85, 124–131. [Google Scholar] [CrossRef]
- Hansmann, Y.; Jaulhac, B.; Kieffer, P.; Martinot, M.; Wurtz, E.; Dukic, R.; Boess, G.; Michel, A.; Strady, C.; Sagez, J.F.; et al. Value of PCR, Serology, and Blood Smears for Human Granulocytic Anaplasmosis Diagnosis, France. Emerg. Infect. Dis. 2019, 25, 996–998. [Google Scholar] [CrossRef]
- Gómez Arcila, V.; Arroyo Salgado, B.J.; Bello Espinosa, A.A.; Rodríguez Escobar, Z.; Polo Andrade, E.R. Diagnóstico microbiológico compatible con Anaplasma sp. en un paciente con síndrome febril. Rev. Argent. Microbiol. 2015, 47, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Faccini-Martínez, Á.A.; Ramírez-Hernández, A.; Barreto, C.; Forero-Becerra, E.; Millán, D.; Valbuena, E.; Sánchez-Alfonso, A.C.; Imbacuán-Pantoja, W.O.; Cortés-Vecino, J.A.; Polo-Terán, L.J.; et al. Epidemiology of Spotted Fever Group Rickettsioses and Acute Undifferentiated Febrile Illness in Villeta, Colombia. Am. J. Trop. Med. Hyg. 2017, 97, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, A.T.; Manzoli, D.E.; Fernandez, C.; Zurvera, D.; Monje, L.D. Anaplasma species infecting questing ticks in the Iberá wetlands ecoregion, Argentina. Exp. Appl. Acarol. 2023, 89, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Tarragona, E.L.; Sebastian, P.S.; Félix, M.L.; Venzal, J.M. Novel Anaplasma (Rickettsiales: Anaplasmataceae) strain and Hepatozoon sp. cf. H. procyonis (Apicomplexa, Hepatozoidae) detected in Procyon cancrivorus (Carnivora, Procyonidae) from Argentina, with note of tick-host association. Vet. Res. Commun. 2023. [Google Scholar] [CrossRef] [PubMed]
- Máttar, S.; Parra, M. Detection of antibodies to Anaplasma, Bartonella and Coxiella in rural inhabitants of the Caribbean area of Colombia. Rev. MVZ Cordoba 2006, 11, 781–789. [Google Scholar]
- Molina-Guzmán, L.P.; Ríos-Tobón, S.; Cardona-Lopera, X.; Lopera, J.A.; Ríos-Osorio, L.A.; Gutiérrez-Builes, L.A. Occupational history of exposure to zoonotic agents in people dedicated to livestock in San Pedro de los Milagros, Antioquia, Colombia. Rev. Fac. Med. 2019, 67, 399–405. [Google Scholar] [CrossRef]
- Cabrera, R.; Mendoza, W.; López-Mosquera, L.; Cano, M.A.; Ortiz, N.; Campo, V.; Keynan, Y.; López, L.; Rueda, Z.V.; Gutiérrez, L.A. Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia. Pathogens 2022, 11, 1090. [Google Scholar] [CrossRef]
- Buelvas, F.; Alvis, N.; Buelvas, I.; Miranda, J.; Mattar, S. Alta Prevalencia de Anticuerpos contra Bartonella y Babesia microti en Poblaciones Rurales y Urbanas en dos Provincias de Córdoba, Colombia. Rev. Salud Publica 2008, 10, 168–177. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Márquez, A.C.; Bravo-Estupiñan, D.M.; Calixto, O.J.; López-Castillo, C.A.; Botero-García, C.A.; Hidalgo, M.; Cuervo, C. Bartonella quintana and Typhus Group Rickettsiae Exposure among Homeless Persons, Bogotá, Colombia. Emerg. Infect. Dis. 2017, 23, 1876–1879. [Google Scholar] [CrossRef]
- Miranda, J.; Mattar, S.; Perdomo, K.; Palencia, L. Seroprevalencia de borreliosis, o enfermedad de Lyme, en una población rural expuesta de Córdoba, Colombia. Rev. Salud Publica 2009, 11, 480–489. [Google Scholar] [CrossRef]
- Palacios, R.; Torres, A.; Trujillo, R. IgG antibody reactivity to Borrelia burgdorferi sensu stricto antigens in patients with morphea in Colombia. Int. J. Dermatol. 2003, 42, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Eraso-Cadena, M.P.; Molina-Guzmán, L.P.; Cardona, X.; Cardona-Arias, J.A.; Ríos-Osorio, L.A.; Gutierrez-Builes, L.A. Serological evidence of exposure to some zoonotic microorganisms in cattle and humans with occupational exposure to livestock in Antioquia, Colombia. Cad. Saude Publica 2018, 34, e001936172018. [Google Scholar] [CrossRef] [PubMed]
- de Ruiz, H.L. Q fever in Colombia, S.A. A serological survey of human and bovine populations. Zent. Vet. B. 1977, 24, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Orrego, R.; Ríos-Osorio, L.A.; Keynan, Y.; Rueda, Z.V.; Gutiérrez, L.A. Molecular detection of Coxiella burnetii in livestock farmers and cattle from Magdalena Medio in Antioquia, Colombia. PLoS ONE 2020, 15, e02343602020. [Google Scholar] [CrossRef]
- Contreras, V.; Máttar, S.; González, M.; Álvarez, J.; Oteo, J.A. Coxiella burnetii in bulk tank milk and antibodies in farm workers at Montería, Colombia. Rev. Colomb. Cienc. Pecu. 2015, 28, 181–187. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Silva-Ramos, C.R.; Blanton, L.S.; Arroyave, E.; Martínez-Diaz, H.C.; Betancourt-Ruiz, P.; Hidalgo, M.; Walker, D.H. Serologic Evidence of Orientia Infection among Rural Population, Cauca Department, Colombia. Emerg. Infect. Dis. 2023, 29, 456–459. [Google Scholar] [CrossRef]
- Welch, D.F. Bartonella. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Saengsawang, P.; Kaewmongkol, G.; Phoosangwalthong, P.; Chimnoi, W.; Inpankaew, T. Detection of zoonotic Bartonella species in ticks and fleas parasitizing free-ranging cats and dogs residing in temples of Bangkok, Thailand. Vet. Parasitol. Reg. Stud. Rep. 2021, 25, 100612. [Google Scholar] [CrossRef]
- Cheslock, M.A.; Embers, M.E. Human Bartonellosis: An Underappreciated Public Health Problem? Trop. Med. Infect. Dis. 2019, 4, 69. [Google Scholar] [CrossRef]
- Garcia-Quintanilla, M.; Dichter, A.A.; Guerra, H.; Kempf, V.A.J. Carrion’s disease: More than a neglected disease. Parasit. Vectors 2019, 12, 141. [Google Scholar] [CrossRef]
- Ruiz, J. Bartonella quintana, past, present, and future of the scourge of World War I. APMIS 2018, 126, 831–837. [Google Scholar] [CrossRef]
- Nelson, C.A.; Moore, A.R.; Perea, A.E.; Mead, P.S. Cat scratch disease: U.S. clinicians’ experience and knowledge. Zoonoses Public Health 2018, 65, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Agan, B.K.; Dolan, M.J. Laboratory diagnosis of Bartonella infections. Clin. Lab. Med. 2002, 22, 937–962. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.R.; Gilioli, R.; Velho, P.E. Bartonellosis diagnosis requires careful evaluation. Braz. J. Infect. Dis. 2010, 14, 217. [Google Scholar] [CrossRef]
- Patiño Camargo, L. Bartonellosis en colombia, bartonellosis de guáitara ó fiebre verrucosa del guáitara. Rev. Fac. Med. 1939, 7, 467–501. [Google Scholar]
- Mackehenie, D. La actualidad médico social. La verruga andina y su nuevo foco colombiano. Rev. Fac. Med. 1940, 8, 350–353. [Google Scholar]
- Patiño Camargo, L.; Cifuentes, P.; Herrera, M.S. El primer caso de Bartonellosis (fiebre verrucosa del guaitara o verruga) en Bogotá. Rev. Fac. Med. 1940, 9, 351–359. [Google Scholar]
- Groot, H. Anotaciones sobre la historia y origen de las bartonellosis humana, enfermedad de Carrion, en Colombia. Pasto, Colombia: Ministerio de Trabajo Higiene y Previsión Social. Pub Lab. Hig. Nariño 1942, 42, 1–7. [Google Scholar]
- Alexander, B. A review of bartonellosis in Ecuador and Colombia. Am. J. Trop. Med. Hyg. 1995, 52, 354–359. [Google Scholar] [CrossRef]
- Sotomayor Tribín, H.A.; Faccini Martínez, Á.A. Una mirada a la bartonelosis: A propósito de dos máscaras prehispánicas donadas al Museo de Historia de Medicina de la Academia Nacional de Medicina de Colombia. Medicina 2021, 43, 450–462. [Google Scholar] [CrossRef]
- Macías, A.; Aguirre, C.; Bustamante, A.; Garcés, C.; Echeverri, V.; Díaz, A. Cat scratch disease in Medellín, Colombia. Oxf. Med. Case Rep. 2014, 2014, 43–45. [Google Scholar] [CrossRef]
- Hurtado, I.C.; Laufer, M. Systemic cat scratch disease (Bartonella henselae infection): A cause of prolonged fever that should not be overlooked. Infectio 2017, 21, 69–72. [Google Scholar]
- Arango-Ferreira, C.; Castano, J. Parinaud’s Oculoglandular Syndrome in Cat Scratch Disease. N. Engl. J. Med. 2018, 379, e312018. [Google Scholar] [CrossRef] [PubMed]
- Brenner, E.C.; Chomel, B.B.; Singhasivanon, O.U.; Namekata, D.Y.; Kasten, R.W.; Kass, P.H.; Cortés-Vecino, J.A.; Gennari, S.M.; Rajapakse, R.P.; Huong, L.T.; et al. Bartonella infection in urban and rural dogs from the tropics: Brazil, Colombia, Sri Lanka and Vietnam. Epidemiol. Infect. 2013, 141, 54–61. [Google Scholar] [CrossRef]
- Margos, G.; Gofton, A.; Wibberg, D.; Dangel, A.; Marosevic, D.; Loh, S.M.; Oskam, C.; Fingerle, V. The genus Borrelia reloaded. PLoS ONE 2018, 13, e02084322018. [Google Scholar] [CrossRef]
- Steere, A.C.; Strle, F.; Wormser, G.P.; Hu, L.T.; Branda, J.A.; Hovius, J.W.; Li, X.; Mead, P.S. Lyme borreliosis. Nat. Rev. Dis. Primers. 2016, 2, 16090. [Google Scholar] [CrossRef]
- Cutler, S.J. Relapsing Fever Borreliae: A Global Review. Clin. Lab. Med. 2015, 35, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Faccini-Martínez, Á.A.; Silva-Ramos, C.R.; Santodomingo, A.M.; Ramírez-Hernández, A.; Costa, F.B.; Labruna, M.B.; Muñoz-Leal, S. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasit. Vectors 2022, 15, 196. [Google Scholar] [CrossRef]
- Fotso Fotso, A.; Drancourt, M. Laboratory Diagnosis of Tick-Borne African Relapsing Fevers: Latest Developments. Front. Public. Health 2015, 3, 254. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.E.; Krishnavahjala, A.; Garcia, M.N.; Bermudez, S. Tick-Borne Relapsing Fever Spirochetes in the Americas. Vet. Sci. 2016, 3, 16. [Google Scholar] [CrossRef]
- Roca-García, M. Contribución al Estudio de la Fiebre Espiroquetal en Colombia; Universidad Nacional, Facultad de Medicina: Bogotá, Colombia, 1939. [Google Scholar]
- Franco, R. Informe presentado al sindicato de Muzo por la misión encargada de estudiar la epidemia de fiebre observada en la mina en los meses de marzo y abril de 1907. Rev. Med. Bogota. 1907, 28, 93–105. [Google Scholar]
- Franco, R.; Toro, G.; Martinez, J. Fiebre amarilla y fiebre espiroquetal. Sesiones Científicas del Centenario. Acad. Nac. Med. Bogota 1911, 1, 169–227. [Google Scholar]
- Robledo, E. Fiebre recurrente en Manizales. Bol. Med. 1907, 1, 113–118. [Google Scholar]
- Dunn, L.H. Studies on the South American tick, Ornithodoros venezuelensis Brumpt, in Colombia. Its prevalence, distribution, and importance as an intermediate host of relapsing fever. J. Parasitol. 1927, 13, 249–255. [Google Scholar] [CrossRef]
- Pampana, E.J. Notes on colombian relapsing fever. Trans. R. Soc. Trop. Med. Hyg. 1928, 21, 315–328. [Google Scholar] [CrossRef]
- Romero Garcia, A.M. La Fiebre Recurrente; Universidad Nacional, Facultad de Medicina: Bogotá, Colombia, 1940. [Google Scholar]
- Branda, J.A.; Steere, A.C. Laboratory Diagnosis of Lyme Borreliosis. Clin. Microbiol. Rev. 2021, 34, e00018-19. [Google Scholar] [CrossRef] [PubMed]
- Marinkelle, C.J.; Grose, E.S. Species of Borrelia from a Colombian bat (Natalus tumidirostris). Nature 1968, 218, 487. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Pérez-Torres, J.; Chala-Quintero, S.M.; Herrera-Sepúlveda, M.T.; Cuervo, C.; Labruna, M.B. Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses Public Health 2021, 68, 12–18. [Google Scholar] [CrossRef]
- López, Y.; Muñoz-Leal, S.; Martínez, C.; Guzmán, C.; Calderón, A.; Martínez, J.; Galeano, K.; Muñoz, M.; Ramírez, J.D.; Faccini-Martínez, Á.A.; et al. Molecular evidence of Borrelia spp. in bats from Córdoba Department, northwest Colombia. Parasit. Vectors 2023, 16, 5. [Google Scholar] [CrossRef]
- López, Y.; Robayo-Sánchez, L.N.; Muñoz-Leal, S.; Aleman, A.; Arroyave, E.; Ramírez-Hernández, A.; Cortés-Vecino, J.A.; Mattar, S.; Faccini-Martínez, Á.A. Ornithodoros puertoricensis (Ixodida: Argasidae) Associated with Domestic Fowl in Rural Dwellings From Córdoba Department, Caribbean Colombia. Front. Vet. Sci. 2021, 8, 704399. [Google Scholar] [CrossRef]
- Bermúdez, S.E.; Armstrong, B.A.; Domínguez, L.; Krishnavajhala, A.; Kneubehl, A.R.; Gunter, S.M.; Replogle, A.; Petersen, J.M.; Lopez, J.E. Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Negl. Trop. Dis. 2021, 15, e00096422021. [Google Scholar] [CrossRef]
- Drancourt, M.; Raoult, D. Coxiella. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Angelakis, E.; Raoult, D. Q Fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef]
- Oyston, P.C.F.; Davies, C. Q fever: The neglected biothreat agent. J. Med. Microbiol. 2011, 60, 9–21. [Google Scholar] [CrossRef]
- Melenotte, C.; Million, M.; Raoult, D. New insights in Coxiella burnetii infection: Diagnosis and therapeutic update. Expert. Rev. Anti Infect. Ther. 2020, 18, 75–86. [Google Scholar] [CrossRef]
- Greiner, A.L.; Bhengsri, S.; Million, M.; Edouard, S.; Thamthitiwat, S.; Clarke, K.; Kersh, G.J.; Gregory, C.J.; Raoult, D.; Parola, P. Acute Q Fever Case Detection among Acute Febrile Illness Patients, Thailand, 2002–2005. Am. J. Trop. Med. Hyg. 2018, 98, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Bijlmer, H.; Fournier, P.E.; Graves, S.; Hartzell, J.; Kersh, G.J.; Limonard, G.; Marrie, T.J.; Massung, R.F.; McQuiston, J.H.; et al. Diagnosis and management of Q fever—United States, 2013: Recommendations from CDC and the Q Fever Working Group. MMWR. Recomm. Rep. 2013, 62, 1–30. [Google Scholar] [PubMed]
- Betancur, C.A.; Múnera, A.G. Endocarditis por Coxiella burnetii: Fiebre Q. Acta Med. Colomb. 2012, 37, 31–33. [Google Scholar] [CrossRef]
- Meza-Cardona, J.C.; Rosso-Suárez, F. Neumonía por Coxiella burnetii: Presentación de un caso y revisión de la literatura. CES Medicina 2012, 26, 201–207. [Google Scholar]
- Mattar, S.; Contreras, V.; González, M.; Camargo, F.; Álvarez, J.; Oteo, J.A. Coxiella burnetii infection in a patient from a rural area of Monteria, Colombia. Rev. Salud Publica 2014, 16, 958–961. [Google Scholar] [CrossRef]
- Uribe Pulido, N.; Escorcia García, C.; Cabrera Orrego, R.; Gutiérrez, L.A.; Agudelo, C.A. Acute Q Fever with Dermatologic Manifestations, Molecular Diagnosis, and No Seroconversion. Open. Forum Infect. Dis. 2021, 8, ofab458. [Google Scholar] [CrossRef]
- Contreras, V.; Gonzalez, M.; Alvarez, J.; Mattar, S. Coxiella burnetii infection in sheep and goats: A public risk health, Colombia. Infectio 2018, 22, 173–177. [Google Scholar] [CrossRef]
- Silva-Ramos, C.R.; Faccini-Martínez, Á.A.; Pérez-Torres, J.; Hidalgo, M.; Cuervo, C. First molecular evidence of Coxiella burnetii in bats from Colombia. Res. Vet. Sci. 2022, 150, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Dumler, J.S.; Rikihisa, Y.; Dasch, G.A. Ehrlichia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Zweygarth, E.; Vancová, M.; Broniszewska, M.; Grubhoffer, L.; Passos, L.M.F.; Ribeiro, M.F.B.; Alberdi, P.; de la Fuente, J. Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. Int. J. Syst. Evol. Microbiol. 2016, 66, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Pritt, B.S.; Allerdice, M.E.J.; Sloan, L.M.; Paddock, C.D.; Munderloh, U.G.; Rikihisa, Y.; Tajima, T.; Paskewitz, S.M.; Neitzel, D.F.; Hoang Johnson, D.K.; et al. Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans. Int. J. Syst. Evol. Microbiol. 2017, 67, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Bodor, M.; Zhang, C.; Xiong, Q.; Rikihisa, Y. Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann. N. Y Acad. Sci. 2006, 1078, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Dumler, J.S.; Carlyon, J.A. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert. Rev. Anti Infect. Ther. 2009, 7, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, D.B.; Dawson, J.E.; Robinson, L.E. Human ehrlichiosis in the United States, 1985 to 1990. Ann. Intern. Med. 1994, 120, 736–743. [Google Scholar] [CrossRef]
- Johnson, D.K.; Schiffman, E.K.; Davis, J.P.; Neitzel, D.F.; Sloan, L.M.; Nicholson, W.L.; Fritsche, T.R.; Steward, C.R.; Ray, J.A.; Miller, T.K.; et al. Human Infection with Ehrlichia muris-like Pathogen, United States, 2007–2013. Emerg. Infect. Dis. 2015, 21, 1794–1799. [Google Scholar] [CrossRef]
- Paddock, C.D.; Liddell, A.M.; Storch, G.A. Other causes of tick-borne ehrlichioses, including Ehrlichia ewingii. In Tick-Borne Diseases of Humans; Goodman, J.L., Dennis, D.T., Sonenshine, D.E., Eds.; ASM Press: Washington, DC, USA, 2005. [Google Scholar]
- Franco-Zetina, M.; Adame-Gallegos, J.; Dzul-Rosado, K. Efectividad de los métodos diagnósticos para la detección de ehrlichiosis monocítica humana y canina. Rev. Chil. Infectol. 2019, 36, 650–655. [Google Scholar] [CrossRef]
- Montes Farah, J.; De la Vega del Risco, F.; Bello Espinosa, A.; Fortich Salvador, A.S. Coinfección de babesiosis y ehrlichiosis: Un caso en Cartagena de indias, Colombia. Rev. Cienc. Biomed. 2012, 3, 339–345. [Google Scholar]
- Hidrón Botero, A.; Muñoz Ramirez, F.; Vega Miranda, J. Primer caso de ehrlichiosis monocítica humana reportado en Colombia. Infectio 2014, 18, 158–161. [Google Scholar] [CrossRef]
- De la Espriella Pérez, A.; Restrepo Gouzi, A.V.; Trujillo Honeysberg, M.R.; Calle Echeverri, D.A. Ehrlichia monocítica humana: Primer reporte de caso pediátrico en Colombia. Rev. Lat. Infect. Pediatr. 2021, 34, 41–47. [Google Scholar] [CrossRef]
- Martínez Díaz, H.C.; Gil-Mora, J.; Betancourt-Ruiz, P.; Silva-Ramos, C.R.; Matiz-González, J.M.; Villalba-Perez, M.A.; Ospina-Pinto, M.C.; Ramirez-Hernández, A.; Olaya-M, L.A.; Bolaños, E.; et al. Molecular detection of tick-borne rickettsial pathogens in ticks collected from domestic animals from Cauca, Colombia. Acta Trop. 2023, 238, 106773. [Google Scholar] [CrossRef] [PubMed]
- Forero-Becerra, E.; Patel, J.; Martínez-Díaz, H.C.; Betancourt-Ruiz, P.; Benavides, E.; Durán, S.; Olaya-Másmela, L.A.; Bolaños, E.; Hidalgo, M.; McBride, J.W. Seroprevalence and Genotypic Analysis of Ehrlichia canis Infection in Dogs and Humans in Cauca, Colombia. Am. J. Trop. Med. Hyg. 2021, 104, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.J.; Walker, D.H. Orientia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Silva-Ramos, C.R.; Jacinavicius, F.C.; Weitzel, T.; Walker, D.H.; Faccini-Martínez, Á.A. Scrub typhus: A new cause of acute undifferentiated febrile illness in Latin America? Travel. Med. Infect. Dis. 2021, 43, 102138. [Google Scholar] [CrossRef]
- Rajapakse, S.; Weeratunga, P.; Sivayoganathan, S.; Fernando, S.D. Clinical manifestations of scrub typhus. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.V.; Sudarsan, T.I.; Prakash, J.A.; Varghese, G.M. Severe scrub typhus infection: Clinical features, diagnostic challenges and management. World J. Crit. Care Med. 2015, 4, 244–250. [Google Scholar] [CrossRef]
- Kala, D.; Gupta, S.; Nagraik, R.; Verma, V.; Thakur, A.; Kaushal, A. Diagnosis of scrub typhus: Recent advancements and challenges. Biotech 2020, 10, 396. [Google Scholar] [CrossRef]
- Jiang, J.; Martínez-Valdebenito, C.; Weitzel, T.; Farris, C.M.; Acosta-Jamett, G.; Abarca, K.; Richards, A.L. Development of a New Genus-Specific Quantitative Real-Time PCR Assay for the Diagnosis of Scrub Typhus in South America. Front. Med. 2022, 9, 831045. [Google Scholar] [CrossRef]
- Jiang, J.; Richards, A.L. Scrub Typhus: No Longer Restricted to the Tsutsugamushi Triangle. Trop. Med. Infect. Dis. 2018, 3, 11. [Google Scholar] [CrossRef]
- Izzard, L.; Fuller, A.; Blacksell, S.D.; Paris, D.H.; Richards, A.L.; Aukkanit, N.; Nguyen, C.; Jiang, J.; Fenwick, S.; Day, N.P.; et al. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J. Clin. Microbiol. 2010, 48, 4404–4409. [Google Scholar] [CrossRef]
- Yen, T.Y.; Zhang, Z.; Chao, C.C.; Ching, W.M.; Shu, P.Y.; Tseng, L.F.; Carvalho, A.V.A.; Tsai, K.H. Serologic Evidence for Orientia Exposure in the Democratic Republic of Sao Tome and Principe. Vector Borne Zoonotic Dis. 2019, 19, 821–827. [Google Scholar] [CrossRef]
- Abarca, K.; Martínez-Valdebenito, C.; Angulo, J.; Jiang, J.; Farris, C.M.; Richards, A.L.; Acosta-Jamett, G.; Weitzel, T. Molecular Description of a Novel Orientia Species Causing Scrub Typhus in Chile. Emerg. Infect. Dis. 2020, 26, 2148–2156. [Google Scholar] [CrossRef]
- Weitzel, T.; Acosta-Jamett, G.; Jiang, J.; Martínez-Valdebenito, C.; Farris, C.M.; Richards, A.L.; Abarca, K. Human seroepidemiology of Rickettsia and Orientia species in Chile—A cross-sectional study in five regions. Ticks Tick. Borne Dis. 2020, 11, 101503. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, T.; Silva-de la Fuente, M.C.; Martínez-Valdebenito, C.; Stekolnikov, A.A.; Pérez, C.; Pérez, R.; Vial, C.; Abarca, K.; Acosta-Jamett, G. Novel Vector of Scrub Typhus in Sub-Antarctic Chile: Evidence from Human Exposure. Clin. Infect. Dis. 2022, 74, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
- Kocher, C.; Jiang, J.; Morrison, A.C.; Castillo, R.; Leguia, M.; Loyola, S.; Ampuero, J.S.; Cespedes, M.; Halsey, E.S.; Bausch, D.G.; et al. Serologic Evidence of Scrub Typhus in the Peruvian Amazon. Emerg. Infect. Dis. 2017, 23, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.C.; Zhang, Z.; Belinskaya, T.; Chen, H.W.; Ching, W.M. Leptospirosis and Rickettsial Diseases Sero-Conversion Surveillance Among U.S. Military Personnel in Honduras. Mil. Med. 2022, 187, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.E.; Raoult, D. Rickettsia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Shpynov, S.; Pozdnichenko, N.; Gumenuk, A. Approach for classification and taxonomy within family Rickettsiaceae based on the Formal Order Analysis. Microbes Infect. 2015, 17, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Blanton, L.S.; Walker, D.H. Rickettsiae as Emerging Infectious Agents. Clin. Lab. Med. 2017, 37, 383–400. [Google Scholar] [CrossRef]
- Blanton, L.S. The Rickettsioses: A Practical Update. Infect. Dis. Clin. North. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef]
- Premaratna, R. Rickettsial illnesses, a leading cause of acute febrile illness. Clin. Med. 2022, 22, 2–5. [Google Scholar] [CrossRef]
- Jay, R.; Armstrong, P.A. Clinical characteristics of Rocky Mountain spotted fever in the United States: A literature review. J. Vector Borne Dis. 2020, 57, 114–120. [Google Scholar] [CrossRef]
- Bechah, Y.; Capo, C.; Mege, J.L.; Raoult, D. Epidemic typhus. Lancet Infect. Dis. 2008, 8, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Tsioutis, C.; Zafeiri, M.; Avramopoulos, A.; Prousali, E.; Miligkos, M.; Karageorgos, S.A. Clinical and laboratory characteristics, epidemiology, and outcomes of murine typhus: A systematic review. Acta Trop. 2017, 166, 16–24. [Google Scholar] [CrossRef]
- Blanton, L.S. Rickettsiales: Laboratory Diagnosis. In Rickettsiales; Thomas, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Stewart, A.G.; Stewart, A.G.A. An Update on the Laboratory Diagnosis of Rickettsia spp. Infection. Pathogens 2021, 10, 1319. [Google Scholar] [CrossRef]
- Myers, T.; Lalani, T.; Dent, M.; Jiang, J.; Daly, P.L.; Maguire, J.D.; Richards, A.L. Detecting Rickettsia parkeri infection from eschar swab specimens. Emerg. Infect. Dis. 2013, 19, 778–780. [Google Scholar] [CrossRef]
- Cuéllar-Sáenz, J.A.; Faccini-Martínez, Á.A.; Ramírez-Hernández, A.; Cortés-Vecino, J.A. Rickettsioses in Colombia during the 20th century: A historical review. Ticks Tick. Borne Dis. 2023, 14, 102118. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Aguirre, L.M.; Martínez-Díaz, H.C.; Betancourt-Ruiz, P.; Hidalgo, M. Historia de la rickettsiosis en Colombia. In Enfermedades Rickettsiales en Latinoamérica; Posada Arias, S., Cabrera Jaramillo, A., Monsalve Buriticá, S., Eds.; Fondo Editorial Biogénesis: Medellín, Colombia, 2020; pp. 218–239. [Google Scholar]
- Gómez-Quintero, C.H.; Faccini-Martínez, Á.A.; Botero-García, C.A.; Lozano, M.; Sánchez-Lerma, L.; Miranda, J.; Mattar, S.; Hidalgo, M. Probable case of spotted fever group rickettsial infection in a new suspected endemic area, Colombia. J. Infect. Public. Health 2017, 10, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Páez, F.A.; Martins, T.F.; Ossa-López, P.A.; Sampieri, B.R.; Camargo-Mathias, M.I. Detection of Rickettsia spp. in ticks (Acari: Ixodidae) of domestic animals in Colombia. Ticks Tick. Borne Dis. 2018, 9, 819–823. [Google Scholar] [CrossRef]
- Patino, L.; Afanador, A.; Paul, J.H. A spotted fever in Tobia, Colombia. Preliminary report. Am. J. Trop. Med. Hyg. 1937, 17, 639–653. [Google Scholar] [CrossRef]
- Patiño Camargo, L. Nuevas observaciones sobre un tercer foco de fiebre petequial (Maculosa) en el Hemisferio Americano. Boletín Oficina Sanit. Panamericana 1941, 20. Available online: https://iris.paho.org/handle/10665.2/13254 (accessed on 1 May 2023).
- Hidalgo, M.; Orejuela, L.; Fuya, P.; Carrillo, P.; Hernandez, J.; Parra, E.; Keng, C.; Small, M.; Olano, J.P.; Bouyer, D.; et al. Rocky Mountain spotted fever, Colombia. Emerg. Infect. Dis. 2007, 13, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Salguero, E.; de la Ossa, A.; Sánchez, R.; Vesga, J.F.; Orejuela, L.; Valbuena, G. Murine typhus in Caldas, Colombia. Am. J. Trop. Med. Hyg. 2008, 78, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Montoya, V.; Martínez, A.; Mercado, M.; De la Ossa, A.; Vélez, C.; Estrada, G.; Pérez, J.E.; Faccini-Martínez, A.A.; Labruna, M.B.; et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. Vector Borne Zoonotic Dis. 2013, 13, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.E.; Estrada, G.I.; Zapata, Y.; Hidalgo, M.; Serna, C.C.; Castro, D.C.; González, C. Frecuencia de anticuerpos y seroconversión frente a Rickettsia spp. en pacientes atendidos en instituciones de salud del departamento de Caldas, Colombia, 2016–2019. Biomedica 2021, 41, 103–117. [Google Scholar] [CrossRef]
- Gil-Lora, E.J.; Patiño-Gallego, J.J.; Acevedo-Gutiérrez, L.Y.; Montoya-Ruiz, C.; Rodas-González, J.D. Rickettsia spp. infection of the group of spotted fevers in febrile patients of the Urabá Antioquia, Colombia. Iatreia 2019, 32, 167–176. [Google Scholar] [CrossRef]
- Arboleda, M.; Acevedo-Gutiérrez, L.Y.; Ávila, A.; Ospina, D.; Díaz, F.J.; Walker, D.H.; Rodas, J.D. Human Rickettsiosis Caused by Rickettsia parkeri Strain Atlantic Rainforest, Urabá, Colombia. Emerg. Infect. Dis. 2020, 26, 3048–3050. [Google Scholar] [CrossRef]
- Quintero Vélez, J.C.; Faccini-Martínez, Á.A.; Rodas González, J.D.; Díaz, F.J.; Ramírez García, R.; Somoyar Ordosgoitia, P.; Parra Saad, E.A.; Osorio Quintero, L.; Rojas Arbeláez, C. Fatal Rickettsia rickettsii infection in a child, Northwestern Colombia, 2017. Ticks Tick. Borne Dis. 2019, 10, 995–996. [Google Scholar] [CrossRef]
- Ramírez-García, R.; Quintero, J.C.; Rosado, A.P.; Arboleda, M.; González, V.A.; Agudelo-Flórez, P. Leptospirosis y rickettsiosis, reto diagnóstico para el síndrome febril en zonas endémicas. Biomedica 2021, 41, 208–217. [Google Scholar] [CrossRef]
- Londoño, A.F.; Arango-Ferreira, C.; Acevedo-Gutiérrez, L.Y.; Paternina, L.E.; Montes, C.; Ruiz, I.; Labruna, M.B.; Díaz, F.J.; Walker, D.H.; Rodas, J.D. A Cluster of Cases of Rocky Mountain Spotted Fever in an Area of Colombia Not Known to be Endemic for This Disease. Am. J. Trop. Med. Hyg. 2019, 101, 336–342. [Google Scholar] [CrossRef]
- Quintero-Vélez, J.C.; Cienfuegos-Gallet, A.V.; Quintero, L.O.; Úsuga, A.F.; Cifuentes, S.; Solari, S.; Rodas, J.D.; Diaz, F.J.; Rojas, C.A. Epidemiology of Rickettsial Infection in the Municipality of Uramita, Colombia. Am. J. Trop. Med. Hyg. 2021, 105, 1013–1023. [Google Scholar] [CrossRef]
- Hidalgo, M.; Miranda, J.; Heredia, D.; Zambrano, P.; Vesga, J.F.; Lizarazo, D.; Mattar, S.; Valbuena, G. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia. Mem. Inst. Oswaldo Cruz. 2011, 106, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Londoño, A.F.; Acevedo-Gutiérrez, L.Y.; Marín, D.; Contreras, V.; Díaz, F.J.; Valbuena, G.; Labruna, M.B.; Hidalgo, M.; Arboleda, M.; Mattar, S.; et al. Human prevalence of the spotted fever group (SFG) rickettsiae in endemic zones of Northwestern Colombia. Ticks Tick. Borne Dis. 2017, 8, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Salazar, C.A.; Recalde-Reyes, D.P.; González, M.M.; Padilla Sanabria, L.; Quintero-Álvarez, L.; Gallego-Gómez, J.C.; Castano-Osorio, J.C. Clinical manifestations and laboratory findings on a case series of acute febrile syndrome with a presumptive diagnosis of dengue virus infection. Quindio, Colombia. Infectio 2016, 20, 84–92. [Google Scholar] [CrossRef]
- Patino-Nino, J.A.; Pérez-Camacho, P.M.; Aguirre-Recalde, J.A.; Faccini-Martínez, Á.A.; Montenegro-Herrera, C.A.; Hidalgo, M. Probable case of murine typhus with respiratory failure in an adolescent from the urban area of Cali, Colombia. Infectio 2016, 20, 97–100. [Google Scholar]
Infectious Agent | Department | Region | Population of Study | Serological/Molecular Method | Positivity (%) | Ref. |
---|---|---|---|---|---|---|
Arenavirus | Antioquia | Urabá antioqueño | Febrile patients | IgG enzyme-linked immunoassay (ELISA) | 1/220 (0.5) | [21] |
Cesar | Kankuamos community | Indigenous population | IgG ELISA | 2/506 (0.4) | [23] | |
Córdoba | Embera Katio community | Indigenous population | IgG ELISA | 10/325 (3.1) | [22] | |
Hantavirus | Antioquia | Urabá antioqueño | Febrile patients | IgG ELISA | 2/220 (0.9) | [21] |
Cesar and Córdoba | Kankuamos and Tuchín communities | Indigenous population | IgG ELISA | 5/506 (1) | [23] | |
Córdoba | Chimá, Cienaga de Oro, Cotorra, Lorica, Purisima, Sahagún | Inhabitants | IgG ELISA | 24/286 (8.4) | [24] | |
Embera Katio population | Indigenous population | IgG ELISA | 5/324 (1.5) | [22] | ||
Tuchín community | Indigenous population | IgG ELISA | 7/87 (8) | [25] | ||
Córdoba and Sucre | Twelve towns | Rural male workers | IgG ELISA | 12/88 (13.6) | [26] | |
Meta | Not specified | Febrile patients | IgG ELISA | 7/100 (7) | [27] | |
Mayaro virus | Amazonas | Araracuara | Indigenous population | Hemagglutination Inhibition (HAI) (cutoff 1:20) | 77/396 (19.4) | [28] |
Cauca | El Tambo, La Sierra, Santander de Quilichao | Rural population | Plaque reduction neutralization testing (PRNT) (cutoff 1:20) | 5/505 (1) | [29] | |
Chocó, Cundinamarca, Meta, Santander, Tolima, Vichada | Not specified | Rural population | Neutralization assay, 50 Median Lethal Dose (LD50) | 57/408 (14) | [30] | |
Guaviare and Magdalena | Not specified | Febrile patients | HAI (cutoff 1:10) | 10/54 (18.5) | [31] | |
Not specified | Not specified | Military recruits | HAI (cutoff 1:20) | 7/292 (2.4) | [32] | |
Oropouche virus | Amazonas | Leticia | Febrile patients | qRT-PCR | 43/153 (28.1) | [33] |
Cauca | El Tambo, La Sierra, Santander de Quilichao | Rural population | PRNT (cutoff 1:20) | 10/505 (2) | [29] | |
Guaviare | Not specified | Febrile patients | HAI (cutoff 1:10) | 4/54 (7.4) | [31] | |
Meta | Villavicencio | Febrile patients | qRT-PCR | 38/566 (6.7) | [33] | |
Norte De Santander | Cúcuta | Febrile patients | qRT-PCR | 3/19 (15.8) | [33] | |
Valle Del Cauca | Cali | Febrile patients | qRT-PCR | 3/53 (5.7) | [33] |
Infectious Agent | Department | Region | Population of Study | Serological/Molecular Method | Positivity (%) | Reference |
---|---|---|---|---|---|---|
Anaplasma | Antioquia | San Pedro de Los Milagros | Livestock farming workers | IgG indirect fluorescent antibody test (IFA) (cutoff value 1:64) | 19/328 (5.8) | [89] |
Córdoba and Sucre | Cienaga de Oro, Cotorra, Lorica, Montería, San Marcos | Rural workers | IgG IFA (cutoff value 1:64) | 15/75 (20) | [88] | |
Cundinamarca | Villeta | Febrile patients | IgG IFA (cutoff value 1:64) | 7/104 (6.7) | [85] | |
Not specified | Rural Magdalena Medio | Febrile patients | IgG IFA (cutoff value 1:64) | 39/271 (14.4) | [90] | |
Bartonella | Córdoba | Montería, Cereté | Human population | IgG IFA (cutoff value 1:64) | 39/80 (48.7) | [91] |
Córdoba and Sucre | Cienaga de Oro, Cotorra, Lorica, Montería, San Marcos | Rural workers | IgG IFA (cutoff value 1:64) | 30/77 (39) | [88] | |
Cundinamarca | Bogotá, D.C. | Homeless people | IgG IFA (cutoff value 1:64) | 49/153 (32) | [92] | |
Borrelia | Antioquia and Santander | Cimitarra, Puerto Berrio, Puerto Nare | Febrile patients | IgG enzyme-linked immunoassay (ELISA) | 18/271 (6.6) | [90] |
Córdoba | Cereté, Cotorra, Lorica, Monteria | Rural workers | IgG ELISA | 30/152 (20) | [93] | |
Valle Del Cauca | Cali | Hospital patients | Immunoblot | Not specified | [94] | |
Coxiella burnetii | Antioquia | Magdalena Medio | Livestock farming workers | IgM/IgG IFA (cutoff value 1:16) | 17/143 (11.9) | [95] |
Magdalena Norte | Livestock farming workers | IgM/IgG IFA (cutoff value 1:16) | 89/189 (47.1) | [95] | ||
Medellin | Slaughterhouse personnel | Complement Fixation Test (cutoff value 1:10) | 83/153 (54) 37/153 (24) (recent infection 1:20) | [96] | ||
Puerto Berrio, Puerto Nare, Puerto Triunfo | Healthy farmers | qPCR | 37/143 (25.9) | [97] | ||
San Pedro de Los Milagros | Livestock farming workers | IgG IFA (cutoff value 1:16) | 20/328 (6.1) | [89] | ||
Córdoba | Monteria (rural areas) | Livestock farming workers | IgG IFA (cutoff value 1:64) | 37/61 (61) | [98] | |
Córdoba and Sucre | Cienaga de Oro, Cotorra, Lorica, Montería, San Marcos | Rural workers | IgG IFA (cutoff value 1:16) | 17/72 (23.6) | [88] | |
Ehrlichia | Antioquia | Magdalena Medio | Febrile patients | IgG IFA (cutoff value 1:64) | 73/271 (26.9) | [90] |
Livestock farming workers | IgM/IgG IFA (cutoff value 1:16) | 51/143 (35.7) | [95] | |||
Magdalena Norte | Livestock farming workers | IgM/IgG IFA (cutoff value 1:16) | 148/189 (78.3) | [95] | ||
San Pedro de Los Milagros | Livestock farming workers | IgG IFA (cutoff value 1:64) | 42/328 (12.8) | [89] | ||
Orientia | Cauca | Caloto, Santander de Quilichao | Inhabitants | IgG ELISA IgG IFA (cutoff value 1:128) | 67/486 (13.8) | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Ramos, C.R.; Faccini-Martínez, Á.A.; Serna-Rivera, C.C.; Mattar, S.; Hidalgo, M. Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. Microorganisms 2023, 11, 2154. https://doi.org/10.3390/microorganisms11092154
Silva-Ramos CR, Faccini-Martínez ÁA, Serna-Rivera CC, Mattar S, Hidalgo M. Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. Microorganisms. 2023; 11(9):2154. https://doi.org/10.3390/microorganisms11092154
Chicago/Turabian StyleSilva-Ramos, Carlos Ramiro, Álvaro A. Faccini-Martínez, Cristian C. Serna-Rivera, Salim Mattar, and Marylin Hidalgo. 2023. "Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia" Microorganisms 11, no. 9: 2154. https://doi.org/10.3390/microorganisms11092154
APA StyleSilva-Ramos, C. R., Faccini-Martínez, Á. A., Serna-Rivera, C. C., Mattar, S., & Hidalgo, M. (2023). Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. Microorganisms, 11(9), 2154. https://doi.org/10.3390/microorganisms11092154