Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = arenavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 31745 KiB  
Article
Characterization of a STAT-1 Knockout Mouse Model for Machupo Virus Infection and Pathogenesis
by Stephanie R. Monticelli, Ana I. Kuehne, Russell R. Bakken, Susan R. Coyne, Kenise D. Lewis, Jo Lynne W. Raymond, Xiankun Zeng, Joshua B. Richardson, Zebulon Lapoint, Jennifer L. Williams, Christopher P. Stefan, Jeffrey R. Kugelman, Jeffrey W. Koehler and Andrew S. Herbert
Viruses 2025, 17(7), 996; https://doi.org/10.3390/v17070996 - 16 Jul 2025
Viewed by 635
Abstract
Machupo virus (MACV), a member of the Arenaviridae family and causative agent of Bolivian hemorrhagic fever, results in lethality rates of 25–35% in humans. Mice lacking the signal transducer and activator of transcription 1 (STAT-1−/−) have previously been shown to succumb [...] Read more.
Machupo virus (MACV), a member of the Arenaviridae family and causative agent of Bolivian hemorrhagic fever, results in lethality rates of 25–35% in humans. Mice lacking the signal transducer and activator of transcription 1 (STAT-1−/−) have previously been shown to succumb to MACV infection within 7–8 days via the intraperitoneal route. Despite these reports, we observed partial lethality in STAT-1−/− mice following challenge with wild-type MACV. Serial sampling studies to evaluate the temporal progression of infection and pathologic changes after challenge revealed a two-phase disease course. The first phase was characterized by viral load and pathological lesions in the spleen, liver, and kidney followed by a second, lethal phase, defined by high viral titers and inflammation in the brain and spinal cord resulting in neurological manifestations and subsequent mortality. Tissue adaptation in the brains of challenged STAT-1−/− mice resulted in a fully lethal model in STAT-1−/− mice (mouse-adapted; maMACV). A similar two-phase disease course was observed following maMACV challenge, but more rapid dissemination of the virus to the brain and overall pathology in this region was observed. The outcome of these studies is a lethal small rodent model of MACV that recapitulates many aspects of human disease. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

58 pages, 1833 KiB  
Review
Animal Models of Pathogenic New World Arenaviruses
by Alexander V. Alvarado, Robert W. Cross, Thomas W. Geisbert and Courtney Woolsey
Microorganisms 2025, 13(6), 1358; https://doi.org/10.3390/microorganisms13061358 - 11 Jun 2025
Viewed by 553
Abstract
Since the emergence of Junín virus in 1953, pathogenic New World arenaviruses have remained a public health concern. These viruses, which also include Machupo virus, Guanarito virus, Sabiá virus, and Chapare virus, cause acute viral hemorrhagic fever and neurological complications, resulting in significant [...] Read more.
Since the emergence of Junín virus in 1953, pathogenic New World arenaviruses have remained a public health concern. These viruses, which also include Machupo virus, Guanarito virus, Sabiá virus, and Chapare virus, cause acute viral hemorrhagic fever and neurological complications, resulting in significant morbidity and mortality. Given the dearth of licensed therapeutics or vaccines against these pathogens, animal models of infection that recapitulate human manifestations of disease remain critically important to the development of efficacious medical countermeasures. Rodents and non-human primates have been successfully used to model human New World arenaviral infections, with guinea pigs, rhesus macaques, and cynomolgus macaques being the most successful models of infection for most major pathogenic New World arenaviruses. Here, we provide a highly comprehensive review of publicly reported animal models of pathogenic New World arenavirus infections, with a discussion of advantages and disadvantages for each model. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

14 pages, 2638 KiB  
Article
Evaluating Antigen- and Vector-Specific Immune Responses of a Recombinant Pichinde Virus-Based Vaccine Expressing the Lymphocytic Choriomeningitis Virus Nucleoprotein
by Michaela Cain, Qinfeng Huang, Shania Sanchez, Hinh Ly and Yuying Liang
Vaccines 2024, 12(12), 1450; https://doi.org/10.3390/vaccines12121450 - 23 Dec 2024
Viewed by 1470
Abstract
Background: Live viral vector-based vaccines are known to elicit strong immune responses, but their use can be limited by anti-vector immunity. Here, we analyzed the immunological responses of a live-attenuated recombinant Pichinde virus (PICV) vector platform (rP18tri). Methods: To evaluate anti-PICV immunity in [...] Read more.
Background: Live viral vector-based vaccines are known to elicit strong immune responses, but their use can be limited by anti-vector immunity. Here, we analyzed the immunological responses of a live-attenuated recombinant Pichinde virus (PICV) vector platform (rP18tri). Methods: To evaluate anti-PICV immunity in the development of vaccine antigen-specific immune responses, we generated a rP18tri-based vaccine expressing the lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP) and administered four doses of this rP18tri-NPLCMV vaccine to mice. Using MHC-I tetramers to detect PICV NP38-45 and LCMV NP396-404 epitope-specific CD8+ T cells, we monitored vector- and vaccine-antigen-specific immune responses after each vaccination dose. Results: LCMV NP396-404-specific effector and memory CD8+ T cells were detected after the first dose and peaked after the second dose, whereas PICV NP38-45-specific memory CD8+ T cells increased with each dose. PICV-binding IgG antibodies peaked after the second dose, while anti-PICV neutralizing antibodies (NAbs) remained low even after the fourth dose. Immunization with the rP18tri-NPLCMV vaccine significantly reduced LCMV viral titers in a chronic LCMV Clone 13 infection model, demonstrating the protective role of LCMV NP-specific T cells. Conclusion: These findings provide important insights into the antigen- and vector-specific immunity of the rP18tri-NPLCMV vaccine and support the development of NP-based vaccines against arenavirus pathogens. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Figure 1

16 pages, 4757 KiB  
Article
A hTfR1 Receptor-Specific VHH Antibody Neutralizes Pseudoviruses Expressing Glycoproteins from Junín and Machupo Viruses
by Qinglin Kang, Gege Li, Yan Wu, Shaoyan Wang, Zhengshan Chen, Xiaodong Zai, Xiaoyan Pan, Rong Wang, Jiansheng Lu, Peng Du, Zhixin Yang, Xiangyang Chi, Gengfu Xiao and Junjie Xu
Viruses 2024, 16(12), 1951; https://doi.org/10.3390/v16121951 - 20 Dec 2024
Viewed by 1887
Abstract
The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved [...] Read more.
The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV. Herein, we investigated 12 anti-hTfR1 VHH (variable domain of the heavy chain of heavy-chain antibody) antibodies and confirmed their interaction with hTfR1. Most of them could bind to the hTfR1 apical domain, which is the glycoprotein 1 (GP1) binding domain of JUNV. Among them, 18N18 exhibited neutralizing activity against both the human immunodeficiency virus (HIV)-vectored lentiviral Junín pseudoviruses and the recombinant vesicular stomatitis virus (VSV)-vectored Junín pseudoviruses. We also verified that 18N18 blocked the interaction between hTfR1 and JUNV GP1. In addition, 18N18 could neutralize another New World arenavirus, the Machupo virus. Using AlphaFold 3-based simulation of 18N18–hTfR1 docking, we determined that 18N18’s binding epitope was located at the JUNV GP1 binding epitope. 18N18 represents a candidate for JUNV treatment and provides a potential approach that could be applied to New World arenaviruses. Full article
(This article belongs to the Special Issue B Cell-Mediated Immunity to Viruses)
Show Figures

Figure 1

10 pages, 1433 KiB  
Article
Dynamics of Acute Infection with Mammarenavirus Wenzhouense in Rattus norvegicus
by Shanshan Du, Xuefei Deng, Xiaoxia Huang, Tiezhu Liu, Aqian Li, Qin Wang, Tingting Tian, Chuan Li, Zhangqi Zheng, Qihan Lin, Zhuowei Li, Shiwen Wang and Jiandong Li
Viruses 2024, 16(9), 1459; https://doi.org/10.3390/v16091459 - 13 Sep 2024
Viewed by 937
Abstract
While Mammarenavirus Wenzhouense (WENV) is broadly distributed across Asia, the dynamics of WENV infection remain unclear. In this study, a field-derived strain of WENV was used to inoculate Sprague Dawley (SD) rats by intramuscular injection, and the process of viral infection was observed [...] Read more.
While Mammarenavirus Wenzhouense (WENV) is broadly distributed across Asia, the dynamics of WENV infection remain unclear. In this study, a field-derived strain of WENV was used to inoculate Sprague Dawley (SD) rats by intramuscular injection, and the process of viral infection was observed over the course of 28 d. Viral RNA became detectable in the blood at 3 dpi and remained detectable for about 12 d. In most organ tissues, viral RNA peaked at 7 dpi, and then began to decline by 14 d, but remained detectable in intestine and brain tissues at 21 and 28 dpi. Viral shedding was detected from fecal samples for 5 d, from 6 to 11 dpi using qRT-PCR, and was recovered from feces collected at 8 dpi. Horizontal contact infection occurred among cage-mates at 14 and 21 dpi. Antibodies against the nucleocapsid were detected at 5 dpi, and then increased and persisted until the end of the experiment. These results enabled us to determine the kinetics of viremic response, viral shedding in feces, and horizontal transmission dynamics, as well as the potential sites for WENV replication and viral maintenance in nature. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 2614 KiB  
Article
Lymphocytic Choriomeningitis Virus Infections in Hungary between 2017–2023—Investigation of the First Congenital Infections
by Anita Koroknai, Anna Nagy, Orsolya Nagy, Nikolett Csonka, Eszter Mezei, Katalin Szomor and Mária Takács
Diagnostics 2024, 14(13), 1436; https://doi.org/10.3390/diagnostics14131436 - 5 Jul 2024
Cited by 3 | Viewed by 1896
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a neglected rodent-borne arenavirus, primarily spread by common house mouse species. Acquired human infections range from asymptomatic to mild flu-like symptoms and self-resolving neurological diseases. In contrast, intrauterine LCMV infection is associated with high mortality and morbidity. Infection [...] Read more.
Lymphocytic choriomeningitis virus (LCMV) is a neglected rodent-borne arenavirus, primarily spread by common house mouse species. Acquired human infections range from asymptomatic to mild flu-like symptoms and self-resolving neurological diseases. In contrast, intrauterine LCMV infection is associated with high mortality and morbidity. Infection of the fetus often leads to fetal death, and surviving fetuses may develop vision impairment and central nervous system developmental disorders. LCMV is mainly diagnosed by serological methods using in-house indirect immunofluorescence assays. LCMV nucleic acid is detected by the nested RT-PCR method and confirmed by Sanger sequencing. In Hungary, 23 acquired lymphocytic choriomeningitis cases were diagnosed between 2017 and 2023. Ten out of 23 confirmed patients proved to be positive by the PCR method. Two cases of intrauterine LCMV infections were detected in 2019 and 2021, respectively. The IgG antibody titers measured in the infant’s serum samples were much higher than the IgG titers of the maternal serum samples. Both IgM and IgA antibodies were detectable in the infants’ sera. As the microbiological diagnosis of LCMV is rather challenging and the symptoms are very similar to the clinical picture of other common teratogenic pathogens such as cytomegalovirus or Toxoplasma gondii, intrauterine LCMV infections might still be underdiagnosed. Full article
(This article belongs to the Special Issue Diagnosis and Management of Meningitis)
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Arenavirus-Based Vectors Generate Robust SIV Immunity in Non-Human Primates
by Bhawna Sharma, Elena Bekerman, Hoa Truong, Johnny Lee, Maria Gamez-Guerrero, Archana Boopathy, Rohit Mital, Katell Bidet Huang, Sarah Ahmadi-Erber, Raphaela Wimmer, Sophie Schulha, Henning Lauterbach, Klaus Orlinger, Silpa Suthram, Mark G. Lewis, Wade Blair, Tariro Makadzange, Romas Geleziunas, Jeffrey P. Murry and Sarah Schmidt
Vaccines 2024, 12(7), 735; https://doi.org/10.3390/vaccines12070735 - 2 Jul 2024
Cited by 2 | Viewed by 2140
Abstract
Arenavirus-based vectors are being investigated as therapeutic vaccine candidates with the potential to elicit robust CD8 T-cell responses. We compared the immunogenicity of replicating (artPICV and artLCMV) and non-replicating (rPICV and rLCMV) arenavirus-based vectors expressing simian immunodeficiency virus (SIV) Gag and Envelope (Env) [...] Read more.
Arenavirus-based vectors are being investigated as therapeutic vaccine candidates with the potential to elicit robust CD8 T-cell responses. We compared the immunogenicity of replicating (artPICV and artLCMV) and non-replicating (rPICV and rLCMV) arenavirus-based vectors expressing simian immunodeficiency virus (SIV) Gag and Envelope (Env) immunogens in treatment-naïve non-human primates. Heterologous regimens with non-replicating and replicating vectors elicited more robust SIV IFN-γ responses than a homologous regimen, and replicating vectors elicited significantly higher cellular immunogenicity than non-replicating vectors. The heterologous regimen elicited high anti-Env antibody titers when administered intravenously, with replicating vectors inducing significantly higher titers than non-replicating vectors. Intramuscular immunization resulted in more durable antibody responses than intravenous immunization for both vector platforms, with no difference between the replicating and non-replicating vectors. Overall, both replicating and non-replicating arenavirus vectors generated robust T- and B-cell-mediated immunity to SIV antigens in treatment-naïve non-human primates, supporting further evaluation of these vectors in a clinical setting for HIV therapy. Full article
(This article belongs to the Special Issue HIV Vaccine Development and Clinical Trails)
Show Figures

Figure 1

14 pages, 1178 KiB  
Article
Exploring the Potential of Muridae as Sentinels for Human and Zoonotic Viruses
by Ilaria Di Bartolo, Luca De Sabato, Giovanni Ianiro, Gabriele Vaccari, Filippo Maria Dini, Fabio Ostanello and Marina Monini
Viruses 2024, 16(7), 1041; https://doi.org/10.3390/v16071041 - 27 Jun 2024
Cited by 3 | Viewed by 1691
Abstract
In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife [...] Read more.
In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

10 pages, 1280 KiB  
Article
Glycoprotein-Specific Polyclonal Antibodies Targeting Machupo Virus Protect Guinea Pigs against Lethal Infection
by Joseph W. Golden, Steven A. Kwilas and Jay W. Hooper
Vaccines 2024, 12(6), 674; https://doi.org/10.3390/vaccines12060674 - 18 Jun 2024
Cited by 1 | Viewed by 1676
Abstract
Convalescent plasma has been shown to be effective at protecting humans against severe diseases caused by New World (NW) arenaviruses, including Junin virus (JUNV) and Machupo virus (MACV). This plasma contains antibodies against the full complement of structural proteins including the nucleocapsid and [...] Read more.
Convalescent plasma has been shown to be effective at protecting humans against severe diseases caused by New World (NW) arenaviruses, including Junin virus (JUNV) and Machupo virus (MACV). This plasma contains antibodies against the full complement of structural proteins including the nucleocapsid and envelope glycoproteins (GPcs) consisting of GP1 and GP2. To gain insights into the protective and cross-protective properties of anti-GPc-specific polyclonal antibodies, we evaluated the ability of a DNA vaccine-produced anti-GPc rabbit antisera targeting MACV strain Carvallo to provide heterologous protection against another MACV strain termed Chicava in the Hartley guinea pig model. The neutralizing activity of the rabbit antisera against the heterologous MACV strains Chicava and Mallale was found to be 54-fold and 23-fold lower, respectively, compared to the titer against the homologous MACV strain Carvallo in the PRNT50 assay. Despite lower neutralizing activity against the strain Chicava, the rabbit antisera protected 100% of the guinea pigs from this strain when administered up to four days post-infection, whereas all the control animals succumbed to the disease. Using vesicular stomatitis virus (VSV) particles pseudotyped with MACV GPc, we identified a single amino acid difference at position 122 between the strains Chicava and Carvallo GPc that significantly influenced the neutralization activity of the rabbit antisera. These findings indicate that polyclonal antibodies targeting the MACV glycoproteins can protect against lethal infection in a post-challenge setting. These data will help guide future antibody-based therapeutics development against NW arenaviruses. Full article
(This article belongs to the Special Issue Immunotherapy and Vaccine Development for Viral Diseases)
Show Figures

Figure 1

11 pages, 2903 KiB  
Case Report
Detection of the Lassa Virus in a Group of Odontogenic Bone Tumor Tissues
by Marco de Feo, Frédéric Dilu Tamba, Anguy Makaka Mutondo, Gracia Kashitu Mujinga, Opiyo Stephen Odong, Chiara Castellani, Luca Pavesi, Patrick I. Mpingabo, Steve Ahuka-Mundeke and Silvia Di Agostino
Anatomia 2024, 3(2), 57-67; https://doi.org/10.3390/anatomia3020006 - 26 Mar 2024
Viewed by 2151
Abstract
Odontogenic bone tumor (OT) is a rare pathology in the world, but it is very common in developing countries; its etiology is still unknown, and it causes serious deformities of the mandible and maxilla if it is not operated upon soon. Lassa virus [...] Read more.
Odontogenic bone tumor (OT) is a rare pathology in the world, but it is very common in developing countries; its etiology is still unknown, and it causes serious deformities of the mandible and maxilla if it is not operated upon soon. Lassa virus (LASV) belongs to the Arenaviridae family, and its reservoir is a rodent of the genus Mastomys. The transmission of the LASV to humans can occur through ingestion or inhalation by contact with dirty objects, the consumption of contaminated food, or exposure to wounds, as rodents shed the virus in their urine and excrement. In this observational study, we aim to evaluate the presence of LASV in OT patient tissues collected in the Democratic Republic of the Congo. For this purpose, a group of nine patients affected by OT were enrolled, and the tissues derived from the surgery were collected. In total, 81.5% of the tissues were positive for LASV presence. Interestingly, we found that not only was the tumor LASV-positive, but in some cases, the bone was close to the tumor and the oral mucosa lining. These preliminary data could suggest the hypothesis that LASV may be involved with the onset of OT. Full article
(This article belongs to the Topic Human Anatomy and Pathophysiology, 2nd Volume)
Show Figures

Figure 1

13 pages, 5248 KiB  
Article
Novel Oliveros-like Clade C Mammarenaviruses from Rodents in Argentina, 1990–2020
by Elizabeth Shedroff, Maria Laura Martin, Shannon L. M. Whitmer, Julia Brignone, Jorge B. Garcia, Carina Sen, Yael Nazar, Cintia Fabbri, Maria Morales-Betoulle, Jairo Mendez, Joel Montgomery, Maria Alejandra Morales and John D. Klena
Viruses 2024, 16(3), 340; https://doi.org/10.3390/v16030340 - 22 Feb 2024
Cited by 1 | Viewed by 2315
Abstract
Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside [...] Read more.
Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 313 KiB  
Review
The Importance of Lassa Fever and Its Disease Management in West Africa
by Rachel A. Reyna, Kirsten E. Littlefield, Nathan Shehu, Tomoko Makishima, Junki Maruyama and Slobodan Paessler
Viruses 2024, 16(2), 266; https://doi.org/10.3390/v16020266 - 7 Feb 2024
Cited by 4 | Viewed by 4122
Abstract
Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 [...] Read more.
Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 cases and 5000 associated deaths per year. This, and the fact that the disease has been reported in travelers, has driven a rapid production of various vaccine candidates. Several of these vaccines are currently in clinical development, despite limitations in understanding the immune response to infection. Alarmingly, the host immune response has been implicated in the induction of sensorineural hearing loss in LF survivors, legitimately raising safety questions about any future vaccines as well as efficacy in preventing potential hearing loss. The objective of this article is to revisit the importance and prevalence of LF in West Africa, with focus on Nigeria, and discuss current therapeutic approaches and ongoing vaccine development. In addition, we aim to emphasize the need for more scientific studies relating to LF-associated hearing loss, and to promote critical discussion about potential risks and benefits of vaccinating the population in endemic regions of West Africa. Full article
(This article belongs to the Special Issue Vaccines and Treatments for Viral Hemorrhagic Fevers)
Show Figures

Graphical abstract

13 pages, 8239 KiB  
Article
PDIA4 Is a Host Factor Important for Lymphocytic Choriomeningitis Virus Infection
by Mengwei Xu, Huan Xu, Weiwei Wan, Xiaoqin Jian, Runming Jin, Lin Wang, Jingshi Wang, Gengfu Xiao, Leike Zhang, Hongbo Chen and Yuxi Wen
Viruses 2023, 15(12), 2343; https://doi.org/10.3390/v15122343 - 29 Nov 2023
Cited by 2 | Viewed by 1757
Abstract
Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently [...] Read more.
Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently available. In this study, using a quantitative proteomic analysis, we identified a variety of host factors that could be needed for LCMV infection, among which we found that protein disulfide isomerase A4 (PDIA4), a downstream factor of endoplasmic reticulum stress (ERS), is important for LCMV infection. Biochemical analysis revealed that LCMV glycoprotein was the main viral component accounting for PDIA4 upregulation. The inhibition of ATF6-mediated ERS could prevent the upregulation of PDIA4 that was stimulated by LCMV infection. We further found that PDIA4 can affect the LCMV viral RNA synthesis processes and release. In summary, we conclude that PDIA4 could be a new target for antiviral drugs against LCMV. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 2524 KiB  
Article
Silencing GMPPB Inhibits the Proliferation and Invasion of GBM via Hippo/MMP3 Pathways
by Zi-Lu Huang, Aalaa Sanad Abdallah, Guang-Xin Shen, Milagros Suarez, Ping Feng, Yan-Jiao Yu, Ying Wang, Shuo-Han Zheng, Yu-Jun Hu, Xiang Xiao, Ya Liu, Song-Ran Liu, Zhong-Ping Chen, Xiao-Nan Li and Yun-Fei Xia
Int. J. Mol. Sci. 2023, 24(19), 14707; https://doi.org/10.3390/ijms241914707 - 28 Sep 2023
Cited by 3 | Viewed by 2630
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignancy and represents the most common brain tumor in adults. To better understand its biology for new and effective therapies, we examined the role of GDP-mannose pyrophosphorylase B (GMPPB), a key unit of the GDP-mannose pyrophosphorylase [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive malignancy and represents the most common brain tumor in adults. To better understand its biology for new and effective therapies, we examined the role of GDP-mannose pyrophosphorylase B (GMPPB), a key unit of the GDP-mannose pyrophosphorylase (GDP-MP) that catalyzes the formation of GDP-mannose. Impaired GMPPB function will reduce the amount of GDP-mannose available for O-mannosylation. Abnormal O-mannosylation of alpha dystroglycan (α-DG) has been reported to be involved in cancer metastasis and arenavirus entry. Here, we found that GMPPB is highly expressed in a panel of GBM cell lines and clinical samples and that expression of GMPPB is positively correlated with the WHO grade of gliomas. Additionally, expression of GMPPB was negatively correlated with the prognosis of GBM patients. We demonstrate that silencing GMPPB inhibits the proliferation, migration, and invasion of GBM cells both in vitro and in vivo and that overexpression of GMPPB exhibits the opposite effects. Consequently, targeting GMPPB in GBM cells results in impaired GBM tumor growth and invasion. Finally, we identify that the Hippo/MMP3 axis is essential for GMPPB-promoted GBM aggressiveness. These findings indicate that GMPPB represents a potential novel target for GBM treatment. Full article
Show Figures

Figure 1

26 pages, 1924 KiB  
Review
Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia
by Carlos Ramiro Silva-Ramos, Álvaro A. Faccini-Martínez, Cristian C. Serna-Rivera, Salim Mattar and Marylin Hidalgo
Microorganisms 2023, 11(9), 2154; https://doi.org/10.3390/microorganisms11092154 - 25 Aug 2023
Cited by 8 | Viewed by 3729
Abstract
In Colombia, tropical febrile illnesses represent one of the most important causes of clinical attention. Febrile illnesses in the tropics are mainly zoonotic and have a broad etiology. The Colombian surveillance system monitors some notifiable diseases. However, several etiologies are not monitored by [...] Read more.
In Colombia, tropical febrile illnesses represent one of the most important causes of clinical attention. Febrile illnesses in the tropics are mainly zoonotic and have a broad etiology. The Colombian surveillance system monitors some notifiable diseases. However, several etiologies are not monitored by this system. In the present review, we describe eleven different etiologies of zoonotic tropical febrile illnesses that are not monitored by the Colombian surveillance system but have scientific, historical, and contemporary data that confirm or suggest their presence in different regions of the country: Anaplasma, Arenavirus, Bartonella, relapsing fever group Borrelia, Coxiella burnetii, Ehrlichia, Hantavirus, Mayaro virus, Orientia, Oropouche virus, and Rickettsia. These could generate a risk for the local population, travelers, and immigrants, due to which they should be included in the mandatory notification system, considering their importance for Colombian public health. Full article
Show Figures

Figure 1

Back to TopTop