Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview
Abstract
:1. Introduction
2. Materials
2.1. One-Way SMPs
2.2. Multiple-Way SMPs
2.3. Two-Way SMPs
2.4. Experimental Testing
3. Manufacturing
4. Working Mechanisms and Applications
4.1. Single-Material Mechanism
4.2. Multi-Material Mechanism
4.3. Multi-Functional Mechanisms
5. Modeling and Simulation
6. Conclusions
- Materials: (i) Several routes for the synthesis of multiple-way and two-way SMPs are available from the literature, and they differ in terms of preparation method, reprocessibility, achieved shape memory, and mechanical properties. (ii) SMP properties influence the overall robustness and performance of soft robots. Accordingly, SMPs with tunable transition temperatures, high thermal stability, and good mechanical properties in the operational temperature range are highly desired. For example, soft robots for biomedical applications require a switching transition temperature close to the body temperature, while those used for aerospace applications require high transition temperatures. (iii) Appropriate characterization methods on both macroscopic and molecular/morphological levels should be performed for a comprehensive knowledge of the polymer under investigation. In general, shape memory behavior characterization at the macroscopic level must be chosen and tailored to the specific SMP category and application under investigation. (iv) Two-way SMPs under constant stress or stress-free conditions are very promising for achieving reversible actuation in soft robots and require extensive research to improve actuation strains/forces and their mechanical performances. In particular, material behavior under cyclic loading should be investigated.
- Manufacturing: (i) Most of SMP-based components are fabricated through conventional techniques rather than through 3D printing, due to the lack in the variety of SMPs that are usable in 3D printing and the limited applicability of existing 3D printing methods to new SMPs. In fact, polyjet printing and extrusion printing are the most used 3D printing techniques for SMP-based soft robotics: polyjet printing allows for the use of materials with tunable mechanical properties, but has, e.g., high equipment costs, several resin properties’ requirements, and limited material choices; extrusion-based printing is versatile, but has, e.g., slow printing speed and relatively low resolution. Extensive research should be dedicated to the development of two-way and multiple-way SMPs for 3D printing and to the analysis of suitable 3D printing methods. (ii) Composite structures present several advantages to enhance the actuation complexity. However, some 3D printing techniques (e.g., stereolithography) cannot enable multi-material printing. Therefore, modifications to current techniques should be investigated. (iii) Novel inks should be studied to enable 3D printed multi-functional SMPs.
- Working mechanisms and applications: (i) Few examples of real-world programmable soft robots, based on both single-material and multi-material working mechanisms, have been proposed in the literature to be used, mainly, for biomedical (e.g., drug delivery systems) and aerospace (e.g., deployable or exploration components) applications. Further efforts should be made to increase the range of application fields. As an example, two-way SMP-based actuators are promising for dynamic building facades and energy savings [289,290]. However, extensive research should focus on material properties, e.g., extension rate, transparency, recovery stress, operational temperatures, and long-term stability. (ii) Several examples of components (e.g., in the form of trusses, periodic structures, compliant mechanisms), capable of programmable motion, have been proposed in the literature. All these components can be potentially integrated into more complex soft robotics systems to achieve advanced capabilities. (iii) Both shape-change speed and response time are key factors for actuation and depend on materials properties, geometrical design, and actuation stimulus. More efforts should be done to improve these two features. (iv) Complex and controllable movements are preferred in advanced robotics applications. Localized heating provides a simple and efficient method to this purpose, and should be investigated in two-way and multiple-way SMPs. (v) More studies should be dedicated to the combination of two or more stimuli into one single polymer to achieve the two-way or multiple-way SME. In this way, SMPs may adapt better to the overall environmental conditions. Moreover, function or property-shifting features, in addition to shape-shifting, should be investigated in order to increase the autonomy of soft robots. To this end, integrated design and fabrication strategies should be developed, as proposed, e.g., by Wehner et al. [291]. (vi) The application potential for two-way and multiple-way SMPs appears unlimited. However, real examples are still limited due to the lack of standards, especially related to 3D printed SMPs, and of manufacturing techniques that allow the realization of complex components.
- Modeling and simulation: (i) Theoretical models and design methodologies are still limited for 4D printed components and are needed to accurately predict and optimize programmable soft robots. (ii) Constitutive models for multiple-way and two-way SMPs are fundamental for the simulation analysis of parts. More efforts should be done in this regard for both viscoelastic and phase transition approaches, especially in the three-dimensional finite strain framework and for two-way LCEs and two-way SMPs under stress-free conditions.
Funding
Conflicts of Interest
References
- Wang, L.; Nurzaman, S.; Iida, F. Soft-Material Robotics; Foundations and Trends in Robotics; Now Publishers Inc.: Boston, MA, USA; Delft, The Netherlands, 2017; Volume 5. [Google Scholar]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1, eaah3690. [Google Scholar] [CrossRef] [Green Version]
- Hines, L.; Petersen, K.; Lum, G.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Bio-inspiration for future space systems. In Acta Futura—European Space Agency; Barker, D. (Ed.) European Space Technology Center (ESTEC): Noordwijk, The Netherlands, 2013; Number 6. [Google Scholar]
- Gong, X.; Yang, K.; Xie, J.; Wang, Y.; Kulkarni, P.; Hobbs, A.; Mazzeo, A. Rotary Actuators Based on Pneumatically Driven Elastomeric Structures. Adv. Mater. 2016, 28, 7533–7538. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.L. Chapter Six - Soft Wearable Robotics Technologies for Body Motion Sensing. In Human Modelling for Bio-Inspired Robotics; Ueda, J., Kurita, Y., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 161–184. [Google Scholar]
- Dehghani, H.; Pourghodrat, A.; Terry, B.; Nelson, C.; Oleynikov, D.; Dasgupta, P. Semi-autonomous locomotion for diagnostic endoscopy device. J. Med. Devices 2015, 9, 030931. [Google Scholar] [CrossRef]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Verma, M.; Ainla, A.; Yang, D.; Harburg, D.; Whitesides, G. A soft tube-climbing robot. Soft Robot. 2018, 5, 133–137. [Google Scholar] [CrossRef]
- Manfredi, L.; Capoccia, E.; Ciuti, G.; Cuschieri, A. A Soft Pneumatic Inchworm Double balloon (SPID) for colonoscopy. Sci. Rep. 2019, 9, 11109. [Google Scholar] [CrossRef] [Green Version]
- Runciman, M.; Darzi, A.; Mylonas, G. Soft Robotics in Minimally Invasive Surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Svetozarevic, B.; Nagy, Z.; Hofer, J.; Jacob, D.; Begle, M.; Chatzi, E.; Schlueter, A. SoRo-Track: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4945–4950. [Google Scholar]
- Zolfagharian, A.; Kouzani, A.Z.; Khoo, S.Y.; Moghadam, A.A.A.; Gibson, I.; Kaynak, A. Evolution of 3D printed soft actuators. Sens. Actuators 2016, 250, 258–272. [Google Scholar] [CrossRef]
- Boyraz, P.; Runge, G.; Raatz, A. An Overview of Novel Actuators for Soft Robotics. Actuators 2018, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Schaffner, M.; Faber, J.; Pianegonda, L.; Rühs, P.; Coulter, F.; Studart, A. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ge, L.; Gu, G. Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions. Sens. Actuators Phys. 2018, 271, 131–138. [Google Scholar] [CrossRef]
- Overvelde, J.; Kloek, T.; D’haena, J.; Bertoldi, K. Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. USA 2015, 112, 10863–10868. [Google Scholar] [CrossRef] [Green Version]
- Janbaz, S.; Bobbert, F.; Mirzaali, M.; Zadpoor, A. Ultra-programmable buckling-driven soft cellular mechanisms. Mater. Horizons 2019, 6, 1138–1147. [Google Scholar] [CrossRef] [Green Version]
- Gladman, A.; Matsumoto, E.A.; Nuzzo, R.; Mahadevan, L.; Lewis, J. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Boatti, E.; Bertoldi, K.; Kramer-Bottiglio, R. Stimuli-induced bi-directional hydrogel unimorph actuators. Extrem. Mech. Lett. 2018, 21, 35–43. [Google Scholar] [CrossRef]
- Florijn, B.; Coulais, C.; van Hecke, M. Programmable Mechanical Metamaterials. Phys. Rev. Lett. 2014, 113, 175503. [Google Scholar] [CrossRef] [Green Version]
- Gillman, A.; Wilson, G.; Fuchi, K.; Hartl, D.; Pankonien, A.; Buskohl, P. Design of Soft Origami Mechanisms with Targeted Symmetries. Actuators 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Bai, H.; Shepherd, R.; Zhao, H. Bio-inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angew. Chem. Int. Ed. 2019, 58, 11182. [Google Scholar] [CrossRef]
- Yoon, C. Advances in biomimetic stimuli responsive soft grippers. Nano Converg. 2019, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N.K.; Jager, E. Knitting and weaving artificial muscles. Sci. Adv. 2017, 3, e1600327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Chen, D.; Liu, C.; Li, J. Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics. Soft Robot. 2019, 6, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Majidi, C. Soft-Matter Engineering for Soft Robotics. Adv. Mater. Technol. 2019, 4, 1800477. [Google Scholar] [CrossRef] [Green Version]
- Kotikian, A.; McMahan, C.; Davidson, E.C.; Muhammad, J.M.; Weeks, R.D.; Daraio, C.; Lewis, J.A. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 2019, 4, eaax7044. [Google Scholar] [CrossRef]
- Zhou, J.; Sheiko, S. Reversible shape-shifting in polymeric materials. J. Polym. Sci. Part Polym. Phys. 2016, 54, 1365–1380. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; An, S.; Yarin, A.; Anand, S. Programmable soft robotics based on nanotextured thermo-responsive actuators. Nanoscale 2019, 11, 2065–2070. [Google Scholar] [CrossRef]
- Han, J.; Jiang, W.; Niu, D.; Li, Y.; Zhang, Y.; Lei, B.; Liu, H.; Shi, Y.; Chen, B.; Yin, L.; et al. Untethered Soft Actuators by Liquid-Vapor Phase Transition: Remote and Programmable Actuation. Adv. Intell. Syst. 2019, 1, 1900109. [Google Scholar] [CrossRef] [Green Version]
- Carrico, J.; Tyler, T.; Leang, K. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: Fundamentals, freeform fabrication, and motion control. Int. J. Smart Nano Mater. 2017, 8, 144–213. [Google Scholar] [CrossRef] [Green Version]
- Lendlein, A. (Ed.) Shape-Memory Polymers; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077–1135. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Huang, W.; Yang, B.; Fu, Y. Polyurethane Shape Memory Polymers; CRC Press Taylor & Francis Group: Bosa Raton, FL, USA, 2012. [Google Scholar]
- Meng, H.; Mohamadian, H.; Stubblefield, M.; Jerro, D.; Ibekwe, S.; Pang, S.S.; Li, G. Various shape memory effects of stimuli-responsive shape memory polymers. Smart Mater. Struct. 2013, 22, 093001. [Google Scholar] [CrossRef]
- Hager, M.; Bode, S.; Weber, C.; Schubert, U. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49, 3–33. [Google Scholar] [CrossRef]
- White, T.; Broer, D. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087. [Google Scholar] [CrossRef]
- Pilate, F.; Toncheva, A.; Dubois, P.; Raquez, J.M. Shape-memory polymers for multiple applications in thematerials world. Eur. Polym. J. 2016, 80, 268–294. [Google Scholar] [CrossRef]
- Sun, Q.P.; Matsui, R.; Takeda, K.; Pieczyska, E. Advances in Shape Memory Materials—In Commemoration of The Retirement of Professor Hisaaki Tobushi; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Ula, S.; Traugutt, N.; Volpe, R.; Patel, R.; Yu, K.; Yakacki, C. Liquid crystal elastomers: An introduction and review of emerging technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [Google Scholar] [CrossRef]
- Lendlein, A.; Gould, O. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 2019, 4, 116–133. [Google Scholar] [CrossRef]
- Mazurek-Budzyńska, M.; Razzaq, M.; Behl, M.; Lendlein, A. Shape-Memory Polymers. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Mazumder, M., Sheardown, H., Al-Ahmed, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wang, K.; Jia, Y.G.; Zhao, C.; Zhu, X. Multiple and two-way reversible shape memory polymers: Design strategies and applications. Prog. Mater. Sci. 2019, 105, 100572. [Google Scholar] [CrossRef]
- Zare, M.; Prabhakaran, M.P.; Parvin, N.; Ramakrishna, S. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chem. Eng. J. 2019, 374, 706–720. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793. [Google Scholar] [CrossRef]
- Hayashi, S. Properties and Applications of Polyurethane-series Shape Memory Polymer. Int. Prog. Urethanes 1993, 6, 90–115. [Google Scholar]
- Li, M.Q.; Song, F.; Chen, L.; Wang, X.L.; Wang, Y.Z. Flexible material based on poly(lactic acid) and liquid crystal with multishape memory effects. ACS Sustain. Chem. Eng. 2016, 4, 3820–3829. [Google Scholar] [CrossRef]
- Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. USA 2006, 103, 18043–18047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, R.; Izzo, E.; Mandelbaum, S. New Design of Shape Memory Polymers: Mixtures of an Elastomeric Ionomer and Low Molar Mass Fatty Acids and Their Salts. Macromolecules 2008, 41, 2978–2980. [Google Scholar] [CrossRef]
- Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20, 3335–3345. [Google Scholar] [CrossRef]
- Pretsch, T. Triple-shape properties of a thermoresponsive poly(ester urethane). Smart Mater. Struct. 2010, 19, 015006. [Google Scholar] [CrossRef]
- Cuevas, J.; Rubio, R.; German, L.; Laza, J.; Vilas, J.; Rodriguez, M.; Leon, L. Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 2012, 8, 4928–4935. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, P.; Zhang, J.; Xiao, L.; Yang, K.; Wang, Y. Poly(p-dioxanone)–poly(ethylene glycol) network: Synthesis, characterization, and its shape memory effect. Polym. Chem. 2012, 3, 2508–2516. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3, 7048–7056. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5, 10520–10528. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, M.; Wang, X.; Zhao, X.; Wang, Z.; Dang, Z.; Ma, L.; Hu, G.; Chen, F. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 2013, 5, 5550–5556. [Google Scholar] [CrossRef] [PubMed]
- Chatani, S.; Wang, C.; Podgórski, M.; Bowman, C. Triple shape memory materials incorporating two distinct polymer networks formed by selective Thiol-Michael addition reactions. Macromolecules 2014, 47, 4949–4954. [Google Scholar] [CrossRef]
- Xiao, L.; Wei, M.; Zhan, M.; Zhang, J.; Xie, H.; Deng, X.; Yang, K.; Wang, Y. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 2014, 5, 2231–2241. [Google Scholar] [CrossRef]
- Xie, H.; Cheng, C.Y.; Du, L.; Fan, C.J.; Deng, X.Y.; Yang, K.K.; Wang, Y. A facile strategy to construct PDLLA-PTMEG network with triple-shape effect via photo-cross-linking of anthracene groups. Macromolecules 2016, 49, 3845–3855. [Google Scholar] [CrossRef]
- Zhuo, S.; Zhang, G.; Feng, X.; Jiang, H.; Shi, J.; Liu, H.; Li, H. Multiple shape memory polymers for self-deployable device. RSC Adv. 2016, 6, 50581–50586. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, H.; Chang, R.; Shan, G.; Bao, Y.; Pan, P. Stereocomplexed and homochiral polyurethane elastomers with tunable crystallizability and multishape memory effects. ACS Macro Lett. 2018, 7, 233–238. [Google Scholar] [CrossRef]
- Qin, H.; Mather, P. Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 2009, 42, 273–280. [Google Scholar] [CrossRef]
- Ahn, S.K.; Deshmukh, P.; Kasi, R. Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules 2010, 43, 7330–7340. [Google Scholar] [CrossRef]
- Ahn, S.K.; Kasi, R. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21, 4543–4549. [Google Scholar] [CrossRef]
- Ahn, S.K.; Deshmukh, P.; Gopinadhan, M.; Kasi, R. Side-chain liquid crystalline polymer networks: Exploiting nanoscale smectic polymorphism to design shape-memory polymers. ACS Nano 2011, 5, 3085–3095. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, H.; Ge, Z.; Chen, S.; Zhuo, H.; Liu, J. Insights into liquid-crystalline shape memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J. Mater. Chem. 2014, 2, 1041–1049. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, H.; Zhuo, H.; Chen, S.; Yang, H.; Ge, Z.; Liu, J. Development of liquid-crystalline shape-memory polyurethane composites based on polyurethane with semi-crystalline reversible phase and hexadecyloxybenzoic acid for self-healing applications. J. Mater. Chem. 2014, 2, 4203–4212. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, T.; Hui, Y.; Wang, W.; Yang, K.; Zhou, Q.; Wang, Y. Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with triple shape memory capacity. J. Mater. Chem. 2015, 3, 13435–13444. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, H.; Zhao, Y. Optically and thermally activated shape memory supramolecular liquid crystalline polymers. J. Mater. Chem. 2016, 4, 4946–4953. [Google Scholar] [CrossRef]
- Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks Based on Poly(ω-pentadecalactone) and Poly(ε-caprolactone)Segments as a Versatile Triple—Shape Polymer System. Adv. Funct. Mater. 2010, 20, 3583–3594. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yuan, H.; Chen, S.; Yang, H.; Ge, Z.; Zhuo, H.; Liu, J. Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J. Mater. Chem. 2014, 2, 10169–10181. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.; Turner, S.; Ashby, V.; Sheiko, S. Isothermal programming of triple shape memory. Polymer 2015, 72, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Xiao, X.; Cheng, Y. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30, 1823–1837. [Google Scholar] [CrossRef]
- Bae, C.; Park, J.; Kim, E.; Kang, Y.; Kim, B. Organic–inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 2011, 21, 11288–11295. [Google Scholar] [CrossRef]
- Luo, X.; Mather, P. Triple-Shape Polymeric Composites (TSPCs). Adv. Funct. Mater. 2010, 202, 649–656. [Google Scholar] [CrossRef]
- Li, G.; King, A.; Xu, T.; Huang, X. Behavior of Thermoset Shape Memory Polymer-Based Syntactic Foam Sealant Trained by Hybrid Two-Stage Programming. J. Mater. Civ. Eng. 2013, 25, 393–402. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Chen, M.; Yang, M.; Tang, L.; Dang, Z.; Chen, F.; Huang, M.; Dong, X. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 20051–20059. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Ban, J.; Pan, L.; Shi, B.; Lu, S. Liquid crystalline polyurethane composites based on supramolecular structure with reversible bidirectional shape memory and multi-shape memory effects. New J. Chem. 2019, 43, 103–110. [Google Scholar] [CrossRef]
- Miaudet, P.; Derre, A.; Maugey, M.; Zakri, C.; Piccione, P.; Inoubli, R.; Poulin, P. Shape and temperature memory of nanocomposites with broadened glass transition. Science 2007, 318, 1294–1296. [Google Scholar] [CrossRef] [PubMed]
- Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Page, A.; Eastman, S. Strain-Based Temperature Memory Effect for Nafion and Its Molecular Origins. Adv. Funct. Mater. 2011, 21, 2057–2066. [Google Scholar] [CrossRef]
- Li, J.; Liu, T.; Pan, Y.; Xia, S.; Zhang, Z.; Ding, X.; Peng, Y. A Versatile Polymer Co-Network with Broadened Glass Transition Showing Adjustable Multiple Shape Memory Effect. Macromol. Chem. Phys. 2012, 213, 2246–2252. [Google Scholar] [CrossRef]
- Shao, Y.; Lavigueur, C.; Zhu, X. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups. Macromolecules 2012, 45, 1924–1930. [Google Scholar] [CrossRef]
- Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K.; Maitland, D.; Voit, W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012, 45, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Samuel, C.; Barrau, S.; Lefebvre, J.M.; Raquez, J.M.; Dubois, P. Designing multiple-shape memory polymers with miscible polymer blends: Evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules 2014, 47, 6791–6803. [Google Scholar] [CrossRef]
- Wang, K.; Jia, Y.G.; Zhu, X. Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking. ACS Biomater. Sci. Eng. 2015, 1, 855–863. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, H.; Liu, Y.; Leng, J.; Du, S. Triple-shape memory effects of bismaleimide based thermosetting polymer networks prepared via heterogeneous crosslinking structures. RSC Adv. 2016, 6, 10233–10241. [Google Scholar] [CrossRef]
- Zheng, N.; Hou, J.; Xu, Y.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple shape memory performance. ACS Macro Lett. 2017, 6, 326–330. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Zheng, Z.; Ding, X. A facile and general approach to recoverable high-strain multishape shape memory polymers. Macromol. Rapid Commun. 2018, 39, e1700613. [Google Scholar] [CrossRef] [PubMed]
- Kratz, K.; Madbouly, S.; Wagermaier, W.; Lendlein, A. Temperature—Memory Polymer Networks with Crystallizable Controlling Units. Adv. Mater. 2011, 23, 4058–4062. [Google Scholar] [CrossRef] [PubMed]
- Dolog, R.; Weiss, R. Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 2013, 46, 7845–7852. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6, 6545–6554. [Google Scholar] [CrossRef]
- Mirtschin, N.; Pretsch, T. Designing temperature-memory effects in semicrystalline polyurethane. RSC Adv. 2015, 5, 46307–46315. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Guo, Y.; Wei, Y.; Dong, P.; Fu, Q. Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. 2016, 120, 11064–11073. [Google Scholar] [CrossRef]
- DiOrio, A.; Luo, X.; Lee, K.; Mather, P. A functionally graded shape memory polymer. Soft Matter 2011, 7, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Yang, B.; An, L.; Li, C.; Chan, Y. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86, 114105. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, Y.; Gao, X.; Li, B.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, X.; Luo, Y. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks. Soft Matter 2016, 12, 3226–3233. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, T.; Xia, S.; Pan, Y.; Zheng, Z.; Ding, X.; Peng, Y. A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments. J. Mater. Chem. 2011, 21, 12213–12217. [Google Scholar] [CrossRef]
- Scalet, G.; Pandini, S.; Messori, M.; Toselli, M.; Auricchio, F. A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks. Polymer 2018, 158, 130–148. [Google Scholar] [CrossRef]
- Westbrook, K.; Parakh, V.; Chung, T.; Mather, P.; Wan, L.; Dunn, M.; Qi, H. Constitutive modeling of shape memory effects in semicrystalline polymers with stretch induced crystallization. J. Eng. Mater. Technol. 2010, 132, 041010. [Google Scholar] [CrossRef] [Green Version]
- Pandini, S.; Baldi, F.; Paderni, K.; Messori, M.; Toselli, M.; Pilati, F.; Gianoncelli, A.; Brisotto, M.; Bontempi, E.; Ricco, T. One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(ε-caprolactone). Polymer 2013, 54, 4253–4265. [Google Scholar] [CrossRef]
- Chung, T.; Romo-Uribe, A.; Mather, P. Two-way reversible shape memory in a semicrystalline network. Macromolecules 2008, 41, 184–192. [Google Scholar] [CrossRef]
- Hong, S.; Woong-Ryeol, Y.; Youk, J. Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Mater. Struct. 2010, 19, 035022. [Google Scholar] [CrossRef]
- Li, J.; Rodgers, W.; Xie, T. Semi-crystalline two-way shape memory elastomer. Polymer 2011, 52, 5320–5325. [Google Scholar] [CrossRef]
- Raquez, J.; Vanderstappen, S.; Meyer, F.; Verge, P.; Alexandre, M.; Thomassin, J.; Jerome, C.; Dubois, P. Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions. Chemistry 2011, 17, 10135–10143. [Google Scholar] [CrossRef] [PubMed]
- Bothe, M.; Pretsch, T. Two-way shape changes of a shape-memory poly(ester urethane). Macromol. Chem. Phys. 2012, 213, 2378–2385. [Google Scholar] [CrossRef]
- Baker, R.; Henderson, J.; Mather, P. Shape memory poly(ε-caprolactone)-copoly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. 2013, 1, 4916–4920. [Google Scholar] [CrossRef]
- Huang, M.; Dong, X.; Wang, L.; Zhao, J.; Liu, G.; Wang, D. Two-way shape memory property and its structural origin of cross-linked poly(ε-caprolactone). RSC Adv. 2014, 4, 55483–55494. [Google Scholar] [CrossRef]
- Kolesov, I.; Dolynchuk, O.; Jehnichen, D.; Reuter, U.; Stamm, M.; Radusch, H. Changes of crystal structure and morphology during two-way shape-memory cycles in cross-linked linear and short-chain branched polyethylenes. Macromolecules 2015, 48, 4438–4450. [Google Scholar] [CrossRef]
- Zotzmann, J.; Behl, M.; Hofmann, D.; Lendlein, A. Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments. Adv. Mater. 2010, 22, 3424–3429. [Google Scholar] [CrossRef]
- Han, J.L.; Lai, S.M.; Chiu, Y. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends. Polym. Adv. Technol. 2018, 29, 2010–2024. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.; Wang, Q.; Wang, T. A tough shape memory polymer with triple shape memory and two-way shape memory properties. J. Mater. Chem. 2014, 2, 4771–4778. [Google Scholar] [CrossRef]
- Kolesov, I. Shape-memory behavior of cross-linked semi-crystalline polymers and their blends. Express Polym. Lett. 2015, 9, 255–276. [Google Scholar] [CrossRef]
- Lendlein, A. Progress in actively moving polymers. J. Mater. Chem. 2010, 20, 3332–3334. [Google Scholar] [CrossRef]
- Finkelmann, H.; Kock, H.J.; Rehage, G. Investigations on liquid crystalline poly-siloxanes 3. Liquid crystalline elastomers—A new type of liquid crystalline material. Die Makromol. Chemie/Rapid Commun. 1981, 2, 317–322. [Google Scholar] [CrossRef]
- Thomsen, D.; Keller, P.; Naciri, J.; Pink, R.; Jeon, H.; Shenoy, D.; Ratna, B. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 2001, 34, 5868–5875. [Google Scholar] [CrossRef]
- Burke, K.; Mather, P. Soft shape memory in main-chain liquid crystalline elastomers. J. Mater. Chem. 2010, 20, 3449–3457. [Google Scholar] [CrossRef]
- Burke, K.; Rousseau, I.; Mather, P. Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Polymer 2014, 55, 5897–5907. [Google Scholar] [CrossRef]
- Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Torbati, A.; Mather, P. A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory. J. Polym. Sci. Part Polym. Phys. 2016, 54, 38–52. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Zhang, J.; Bi, M.; Zhang, J.; Niu, H.; Li, C.; Yu, H.; Wang, B.; Jiang, H. Two-step crosslinked liquid-crystalline elastomer with reversible two-way shape memory characteristics. Mol. Cryst. Liq. Cryst. 2017, 650, 13–22. [Google Scholar] [CrossRef]
- Wen, Z.; McBride, M.; Zhang, X.; Han, X.; Martinez, A.; Shao, R.; Zhu, C.; Visvanathan, R.; Clark, N.; Wang, Y.; et al. Reconfigurable LC elastomers: Using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers. Macromolecules 2018, 51, 5812–5819. [Google Scholar] [CrossRef]
- Behl, M.; Kratz, K.; Noechel, U.; Sauter, T.; Lendlein, A. Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. USA 2013, 110, 12555–12559. [Google Scholar] [CrossRef] [Green Version]
- Behl, M.; Kratz, K.; Zotzmann, J.; Nöchel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25, 4466–4469. [Google Scholar] [CrossRef]
- Zhou, J.; Turner, S.; Brosnan, S.; Li, Q.; Carrillo, J.M.; Nykypanchuk, D.; Gang, O.; Ashby, V.; Dobrynin, A.; Sheiko, S. Shapeshifting: Reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47, 1768–1776. [Google Scholar] [CrossRef]
- Saatchi, M.; Behl, M.; Nöchel, U.; Lendlein, A. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature. Macromol. Rapid Commun. 2015, 36, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, J.; Vatankhah-Varnoosfaderani, M.; Nykypanchuk, D.; Gang, O.; Sheiko, S. Advancing reversible shape memory by tuning the polymer network architecture. Macromolecules 2016, 49, 1383–1391. [Google Scholar] [CrossRef]
- Qian, C.; Dong, Y.; Zhu, Y.; Fu, Y. Two-way shape memory behavior of semicrystalline elastomer under stress-free condition. Smart Mater. Struct. 2016, 25, 085023. [Google Scholar] [CrossRef]
- Dolynchuk, O.; Kolesov, I.; Jehnichen, D.; Reuter, U.; Radusch, H.J.; Sommer, J.U. Reversible shape-memory effect in cross-linked linear poly(ε-caprolactone) under stress and stress-free conditions. Macromolecules 2017, 50, 3841–3854. [Google Scholar] [CrossRef]
- Wang, K.; Jia, Y.G.; Zhu, X. Two-way reversible shape memory polymers made of crosslinked cocrystallizable random copolymers with tunable actuation temperatures. Macromolecules 2017, 50, 8570–8579. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, W.; Zhu, S. Reversible shape memory polymer from semicrystalline poly(ethylene-co-vinyl acetate) with dynamic covalent polymer networks. Macromolecules 2018, 51, 8956–8963. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Han, J.; Zhu, Y.; Huang, H.; Li, J.; Tang, B. Two-way shape memory polymer with “switch–spring” composition by interpenetrating polymer network. J. Mater. Chem. 2014, 2, 18816–18822. [Google Scholar] [CrossRef]
- Meng, Y.; Jiang, J.; Anthamatten, M. Shape actuation via internal stress-induced crystallization of dual-cure networks. ACS Macro Lett. 2015, 4, 115–118. [Google Scholar] [CrossRef]
- Fan, L.; Rong, M.; Zhang, M.; Chen, X. A facile approach toward scalable fabrication of reversible shape-memory polymers with bonded elastomer microphases as internal stress provider. Macromol. Rapid Commun. 2017, 38, 1700124. [Google Scholar] [CrossRef]
- Wang, M.; Sayed, S.; Guo, L.; Lin, B.; Zhang, X.; Sun, Y.; Yang, H. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules 2016, 49, 663–671. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Guo, L.X.; Lin, B.P.; Zhang, X.Q.; Sun, Y.; Yang, H. A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers. Polym. Chem. 2017, 8, 1364–1370. [Google Scholar] [CrossRef]
- Hanzon, D.; Traugutt, N.; McBride, M.; Bowman, C.; Yakacki, C.; Yu, K. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter 2018, 14, 951–960. [Google Scholar] [CrossRef]
- Bothe, M.; Pretsch, T. Bidirectional actuation of a thermoplastic polyurethane elastomer. J. Mater. Chem. 2013, 1, 14491–14497. [Google Scholar] [CrossRef]
- Biswas, A.; Aswal, V.; Sastry, P.; Rana, D.; Maiti, P. Reversible bidirectional shape memory effect in polyurethanes through molecular flipping. Macromolecules 2016, 4889–4897. [Google Scholar] [CrossRef]
- Lu, L.; Li, G. One-way multishape-memory effect and tunable two-way shape memory effect of ionomer poly(ethylene-co-methacrylic acid). ACS Appl. Mater. Interfaces 2016, 8, 14812–14823. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, W.; Zhu, S. Polyolefin thermoplastics for multiple shape and reversible shape memory. ACS Appl. Mater. Interfaces 2017, 9, 4882–4889. [Google Scholar] [CrossRef]
- Yan, W.; Rudolph, T.; Noechel, U.; Gould, O.; Behl, M.; Kratz, K.; Lendlein, A. Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains. Macromolecules 2018, 51, 4624–4632. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62, 4088–4090. [Google Scholar] [CrossRef]
- Tobushi, H.; Hayashi, S.; Sugimoto, Y.; Date, K. Two-way bending properties of shape memory composite with SMA and SMP. Materials 2009, 2, 1180–1192. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, J.; Zhuo, H. Properties and mechanism of two-way shape memory polyurethane composites. Compos. Sci. Technol. 2010, 70, 1437–1443. [Google Scholar] [CrossRef]
- Tamagawa, H. Thermo-responsive two-way shape changeable polymeric laminate. Mater. Lett. 2010, 64, 749–751. [Google Scholar] [CrossRef]
- Ghosh, P.; Rao, A.; Srinivasa, A. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater. Des. 2013, 44, 164–171. [Google Scholar] [CrossRef]
- Lama, G.; Cerruti, P.; Lavorgna, M.; Carfagna, C.; Ambrogi, V.; Gentile, G. Controlled actuation of a carbon nanotube/epoxy shape-memory liquid crystalline elastomer. J. Phys. Chem. 2016, 120, 24417–24426. [Google Scholar] [CrossRef]
- Belmonte, A.; Lama, G.; Gentile, G.; Fernandez-Francos, X.; De la Flor, S.; Cerruti, P.; Ambrogi, V. Synthesis and characterization of liquid-crystalline networks: Toward autonomous shape-memory actuation. J. Phys. Chem. 2017, 121, 22403–22414. [Google Scholar] [CrossRef]
- Kang, T.H.; Lee, J.M.; Yu, W.R.; Youk, J.; Ryu, H. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites. Smart Mater. Struct. 2012, 21, 035028. [Google Scholar] [CrossRef]
- Imai, S.; Sakurai, K. An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs. Precis. Eng. 2013, 37, 572–579. [Google Scholar] [CrossRef]
- Taya, M.; Liang, Y.; Namli, O.; Tamagawa, H.; Howie, T. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite. Smart Mater. Struct. 2013, 22, 105003. [Google Scholar] [CrossRef]
- Wagermaier, W.; Kratz, K.; Heuchel, M.; Lendlein, A. Characterization methods for shape memory polymers. In Shape-Memory Polymers. Advances in Polymer Science; Lendlein, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 226. [Google Scholar]
- Lei, M.; Yu, K.; Lu, H.; Qi, H. Influence of structural relaxation on thermomechanical and shape memory performances of amorphous polymers. Polymer 2017, 109, 216–228. [Google Scholar] [CrossRef]
- Pieczyska, E.; Staszczak, M.; Kowalczyk-Gajewska, K.; Maj, M.; Golasiński, K.; Golba, S.; Tobushi, H.; Hayashi, S. Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates. Polym. Test. 2017, 60, 333–342. [Google Scholar] [CrossRef]
- Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Thermal and mechanical properties of plasticized poly (L-lactic acid). J. Appl. Polym. Sci. 2003, 90, 1731–1738. [Google Scholar] [CrossRef]
- Yang, H.; Leow, W.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3D Printed Photoresponsive Devices Based on Shape Memory Composites. Adv. Mater. 2017, 29, 1701627. [Google Scholar] [CrossRef] [PubMed]
- Su, J.W.; Gao, W.; Trinh, K.; Kenderes, S.M.; Tekin Pulatsu, E.; Zhang, C.; Whittington, A.; Lin, M.; Lin, J. 4D printing of polyurethane paint-based composites. Int. J. Smart Nano Mater. 2019, 10, 237–248. [Google Scholar] [CrossRef]
- Chen, S.; Mo, F.; Yang, Y.; Stadler, F.; Chen, S.; Yang, H.; Ge, Z. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J. Mater. Chem. 2015, 3, 2924–2933. [Google Scholar] [CrossRef]
- Deng, X.; Xie, H.; Du, L.; Fan, C.; Cheng, C.; Yang, K.; Wang, Y.Z. Polyurethane networks based on disulfide bonds: From tunable multi-shape memory effects to simultaneous self-healing. Sci. China Mater. 2019, 62, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Mo, F.; Stadler, F.; Chen, S.; Ge, Z.; Zhuo, H. Development of zwitterionic copolymers with multi-shape memory effects and moisture-sensitive shape memory effects. J. Mater. Chem. 2015, 3, 6645–6655. [Google Scholar] [CrossRef]
- Molavi, F.K.; Ghasemi, I.; Messori, M.; Esfandeh, M. Design and Characterization of Novel Potentially Biodegradable Triple-Shape Memory Polymers Based on Immiscible Poly(L-lactide)/Poly(ε-caprolactone) Blends. J. Polym. Environ. 2019, 27, 632–642. [Google Scholar] [CrossRef]
- Dolynchuk, O.; Kolesov, I.; Radusch, H.J. Thermodynamic description and modeling of two-way shape-memory effect in crosslinked semicrystalline polymers. Polym. Adv. Technol. 2014, 25, 1307–1314. [Google Scholar] [CrossRef]
- Xu, M.; Cong, Y.; Zhang, B. Synthesis and characterisation of biodegradable liquid crystal elastomer with the property of shape recovery. Liq. Cryst. 2017, 44, 1701–1708. [Google Scholar] [CrossRef]
- Marotta, A.; Lama, G.; Ambrogi, V.; Cerruti, P.; Giamberini, M.; Gentile, G. Shape memory behavior of liquid-crystalline elastomer/graphene oxide nanocomposites. Compos. Sci. Technol. 2018, 159, 251–258. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Leng, J. Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms. Coord. Chem. Rev. 2016, 320, 38–52. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, T.; Wang, J.; Li, Z.; Lu, H.; Liu, Y.; Leng, J. ‘Two way’ shape memory composites based on electroactive polymer and thermoplastic membrane. Compos. A Appl. Sci. Manuf. 2016, 90, 502–509. [Google Scholar] [CrossRef]
- Sachyani Keneth, E.; Scalet, G.; Layani, M.; Tibi, G.; Degani, A.; Auricchio, F.; Magdassi, S. Pre-programmed Tri-layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. Soft Robot. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar] [CrossRef] [PubMed]
- Brömmel, F.; Kramer, D.; Finkelmann, H. Preparation of liquid crystalline elastomers. In Liquid Crystal Elastomers: Materials and Applications; De Jeu, F., Ed.; Springer: Berlin, Germany, 2012; pp. 1–48. [Google Scholar]
- Belmonte, A.; Fernández-Francos, X.; Serra, A.; De la Flor, S. Phenomenological characterization of sequential dual-curing of off-stoichiometric “thiol-epoxy” systems: Towards applicability. Mater. Des. 2017, 113, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Krause, S.; Dersch, R.; Wendorff, J.; Finkelmann, H. Photocrosslinkable liquid crystal main-chain polymers: Thin films and electrospinning. Macromol. Rapid Commun. 2007, 28, 2062–2068. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, X.; Fu, J.; Huan, C.; Shuai, Q.; Yongjun, Z.; Yanqing, Z.; Gang, X. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539. [Google Scholar] [CrossRef]
- Gonzalez-Henriquez, C.M.; Sarabia-Vallejos, M.A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019, 94, 57–116. [Google Scholar] [CrossRef]
- Tibbits, S. Design to self-assembly. Archit. Des. 2012, 82, 68–73. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, O.; Jo, W.; Lee, H.; Moon, M.W. 4D Printing Technology: A Review. Print. Addit. Manuf. 2015, 2, 159–167. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.; Kang, S.; Wu, X.; Lu, H.; Fu, J.; Cui, H. From 3D to 4D printing: Approaches and typical applications. J. Mech. Sci. Technol. 2015, 29, 4281–4288. [Google Scholar] [CrossRef]
- Khare, V.; Sonkaria, S.; Lee, G.Y.; Ahn, S.H.; Chu, W.S. From 3D to 4D printing—Design, material and fabrication for multi-functional multi-materials. Int. J. Precis. Eng. Manuf. Technol. 2017, 4, 291–299. [Google Scholar] [CrossRef]
- Lee, A.Y.; An, J.; Chua, C.K. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering 2017, 3, 663–674. [Google Scholar] [CrossRef]
- Miao, S.; Castro, N.; Nowicki, M.; Xia, L.; Cui, H.; Zhou, X.; Zhu, W.; Lee, S.j.; Sarkar, K.; Vozzi, G. 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today 2017, 20, 577–591. [Google Scholar] [CrossRef]
- Momeni, F.; Hassani, S.M.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Pei, E.; Loh, G. Technological considerations for 4D printing: An overview. Prog. Addit. Manuf. 2014, 3, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.; Huang, L.M.; Zhao, Q.; Xie, T. 4D Printing: History and Recent Progress. Chin. J. Polym. Sci. 2018, 36, 563–575. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Kaynak, A.; Kouzani, A. Closed-loop 4D-printed soft robots. Mater. Des. 2020, 188, 108411. [Google Scholar] [CrossRef]
- Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C. Active printed materials for complex self-evolving deformations. Sci. Rep. 2015, 4, 7422. [Google Scholar] [CrossRef] [Green Version]
- Khoo, Z.; Teoh, J.; Liu, Y.; Chua, C.; Yang, S.; An, J.; Leong, K.; Yeong, W. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Shin, D.G.; Kim, T.H.; Kim, D.E. Review of 4D printing materials and their properties. Int. J. Precis. Eng. Manuf. Technol. 2017, 4, 349–357. [Google Scholar] [CrossRef]
- Tibbits, S. 4D printing: Multi-material shape change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28, 4449–4454. [Google Scholar] [CrossRef]
- Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur. Polym. J. 2018, 101, 169–176. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Feng, J. 3D printing of tunable shape memory polymer blends. J. Mater. Chem. 2017, 5, 8361–8365. [Google Scholar] [CrossRef]
- Yu, K.; Dunn, M.; Qi, H. Digital manufacture of shape changing components. Extrem. Mech. Lett. 2015, 4, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Inverardi, N.; Pandini, S.; Bignotti, F.; Scalet, G.; Marconi, S.; Auricchio, F. Sequential Motion of 4D Printed Photopolymers with Broad Glass Transition. Macromol. Mater. Eng. 2019, 305, 1900370. [Google Scholar] [CrossRef]
- Yuan, C.; Roach, D.; Dunn, C.; Mu, Q.; Kuang, X.; Yakacki, C.; Wang, T.; Yu, K.; Qi, H. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 2017, 13, 5558. [Google Scholar] [CrossRef]
- Ambulo, C.; Burroughs, J.; Boothby, J.; Kim, H.; Shankar, M.; Ware, T. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 2017, 9, 37332–37339. [Google Scholar] [CrossRef]
- Boothby, J.; Ware, T. Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter 2017, 13, 4349. [Google Scholar] [CrossRef] [PubMed]
- Kotikian, A.; Truby, R.; Boley, J.; White, T.; Lewis, J. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 2018, 30, 1706164. [Google Scholar] [CrossRef] [PubMed]
- López-Valdeolivas, M.; Liu, D.; Broer, D.; Sánchez-Somolinos, C. 4D Printed Actuators with Soft-Robotic Functions. Macromol. Rapid Commun. 2018, 39, 1700710. [Google Scholar] [CrossRef]
- Saed, M.; Ambulo, C.; Kim, H.; De, R.; Raval, V.; Searles, K.; Siddiqui, D.; Cue, J.; Stefan, M.; Shankar, M.; et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 2019, 29, 1806412. [Google Scholar] [CrossRef]
- Ge, Q.; Qi, H.; Dunn, M. Active materials by four-dimension printing. Appl. Phys. Lett. 2013, 103, 131901. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, C.; Ding, Z.; Isakov, M.; Mao, Y.; Wang, T.; Dunn, M.; Qi, H. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. 2016, 6, 24224. [Google Scholar] [CrossRef]
- Ge, Q.; Sakhaei, A.; Lee, H.; Dunn, C.; Fang, N.; Dunn, M. Multi-material 4D printing with tailorable shape memory polymers. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Ding, Z.; Yuan, C.; Ai, S.; Isakov, M.; Wu, J.; Dunn, M.; Qi, H. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 2016, 6, 24761. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wan, Y.; Nam, R.; Chu, M.; Naguib, H. 4D-printed hybrids with localized shape memory behaviour: Implementation in a functionally graded structure. Sci. Rep. 2019, 9, 18754. [Google Scholar] [CrossRef]
- Naficy, S.; Gately, R.; Gorkin III, R.; Xin, H.; Spinks, G. 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. 2016, 302, 1600212. [Google Scholar] [CrossRef]
- Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H.; Dunn, M. Direct 4D Printing Via Active Composite Materials. Sci. Adv. 2017, 3, e1602890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Ding, Z.; Wang, T.; Dunn, M.; Qi, H. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Mater. Struct. 2017, 26, 105027. [Google Scholar] [CrossRef]
- Hu, G.; Damanpack, A.; Bodaghi, M.; Liao, W. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Mater. Struct. 2017, 26, 125023. [Google Scholar] [CrossRef]
- van Manen, T.; Janbaz, S.; Zadpoor, A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horizons 2017, 4, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique. Sci. Rep. 2015, 5, 8936. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H.; Fang, D. Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing. Macromol. Rapid Commun. 2017, 38, 1600625. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H.; Fang, D. Origami by Frontal Photopolymerization. Sci. Adv. 2017, 3, e1602326. [Google Scholar] [CrossRef] [Green Version]
- Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys. Prototyp. 2016, 11, 263. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.; Liao, W. Adaptive metamaterials by functionally graded 4D printing. Mater. Des. 2017, 135, 26–36. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.; Liao, W. Triple shape memory polymers by 4D printing. Smart Mater. Struct. 2016, 27, 065010. [Google Scholar] [CrossRef] [Green Version]
- Pandini, S.; Inverardi, N.; Scalet, G.; Battini, D.; Bignotti, F.; Marconi, S.; Auricchio, F. Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures. Mech. Res. Commun. 2020, 103, 103463. [Google Scholar] [CrossRef]
- Fan, J.; Li, G. High performance and tunable artificial muscle based on two-way shape memory polymer. RSC Adv. 2017, 7, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Fan, J.; Li, G. Artificial muscles made of chiral two-way shape memory polymer fibers. Appl. Phys. Lett. 2016, 109, 183701. [Google Scholar] [CrossRef]
- Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. 2014, 2, 6855–6866. [Google Scholar] [CrossRef]
- Ge, F.; Zhao, Y. A new function for thermal phase transition-based polymer actuators: autonomous motion on a surface of constant temperature. Chem. Sci. 2017, 8, 6307–6312. [Google Scholar] [CrossRef] [Green Version]
- Farhan, M.; Rudolph, T.; Nochel, U.; Yan, W.; Kratz, K.; Lendlein, A. Noncontinuously Responding Polymeric Actuators. ACS Appl. Mater. Interfaces 2017, 9, 33559–33564. [Google Scholar] [CrossRef]
- Shahsavan, H.; Salili, S.; Jakli, A.; Zhao, B. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv. Mater. 2017, 29, 1604021. [Google Scholar] [CrossRef]
- Buguin, A.; Li, M.H.; Silberzan, P.; Ladoux, B.; Keller, P. Micro-actuators: When artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 2006, 128, 1088. [Google Scholar] [CrossRef]
- Yang, H.; Buguin, A.; Taulemesse, J.M.; Kaneko, K.; Méry, S.; Bergeret, A.; Keller, P. Micron-Sized Main-Chain Liquid Crystalline Elastomer Actuators with Ultralarge Amplitude Contractions. J. Am. Chem. Soc. 2009, 131, 15000. [Google Scholar] [CrossRef]
- Ahn, C.; Liang, X.; Cai, S. Inhomogeneous stretch induced patterning of molecular orientation in liquid crystal elastomers. Extrem. Mech. Lett. 2015, 5, 30. [Google Scholar] [CrossRef]
- de Haan, L.; Gimenez-Pinto, V.; Konya, A.; Nguyen, T.S.; Verjans, J.; Sánchez-Somolinos, C.; Selinger, J.; Selinger, R.D.; Broer, J.; Schenning, A. Accordion-like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films. Adv. Funct. Mater. 2014, 24, 1251. [Google Scholar] [CrossRef]
- Ware, T.; McConney, M.; Wie, J.; Tondigliaand, V.; White, T. Voxelated liquid crystal elastomers. Science 2015, 347, 982–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, J.; Rodriguez, R.; Holmes Jr, L.; Mather, P.; Wetzel, E. Thermally driven microfluidic pumping via reversible shape memory polymers. Smart Mater. Struct. 2016, 25, 085043. [Google Scholar] [CrossRef]
- Tippets, C.; Li, Q.; Fu, Y.; Donev, E.; Zhou, J.; Turner, S.; Jackson, A.M.; Ashby, V.; Sheiko, S.; Lopez, R. Dynamic optical gratings accessed by reversible shape memory. ACS Appl. Mater. Interfaces 2015, 7, 14288–14293. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, X.; Tok, A.; Lipik, V. Body temperature-responsive two-way and moisture-responsive one-way shape memory behaviors of poly(ethylene glycol)-based networks. Polym. Chem. 2017, 8, 3833–3840. [Google Scholar] [CrossRef]
- Ahn, J.S.; Yu, W.R.; Youk, J.; Ryu, H. In situ temperature tunable pores of shape memory polyurethane membranes. Smart Mater. Struct. 2011, 20, 105024. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Hu, G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 2016, 6, 22431. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Fang, T.; Liu, X.; Chen, S.; Lu, C.; Xu, Z. Near-infrared light triggered soft actuators in aqueous media pre-pared from shape-memory polymer composites. Macromol. Mater. Eng. 2016, 301, 1111–1120. [Google Scholar] [CrossRef]
- Liu, Y.; Boyles, J.; Genzer, J.; Dickey, M. Self-folding of polymer sheets using local light absorption. Soft Matter 2012, 8, 1764. [Google Scholar] [CrossRef]
- Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. J. Am. Chem. Soc. 2016, 138, 2118–2121. [Google Scholar] [CrossRef]
- Liu, Y.; Shaw, B.; Dickey, M.; Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 2017, 3, e1602417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Song, H.; Jiang, R.; Song, J.; Zhao, Q.; Xie, T. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 2018, 4, eaao3865. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Wei, H.; Qin, Y.; Lin, Z.; Zhao, X.; Xu, F.; Leng, J.; He, K.; Cao, A.; Li, Y. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale 2016, 8, 18042–18049. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, J.; Paulino, G.; Qi, H. Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers. Sci. Rep. 2017, 7, 3511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Q.; Dunn, C.; Qi, H.; Dunn, M. Active origami by 4D printing. Smart Mater. Struct. 2014, 23, 094007. [Google Scholar] [CrossRef]
- Yu, K.; Ritchie, A.; Mao, Y.; Dunn, M.; Qi, H. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia IUTAM 2015, 12, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Yu, K.; Isakov, M.; Wu, J.T.; Dunn, M.; Qi, H. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 2015, 5, 13616. [Google Scholar] [CrossRef]
- Belmonte, A.; Lama, G.; Cerruti, P.; Ambrogi, V. Motion control in free-standing shape-memory actuators. Smart Mater. Struct. 2018, 27, 075013. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Mu, X.; Dunn, C.; Haidar, J.; Wang, T.; Qi, H. Thermomechanically triggered two-stage pattern switching of 2D lattices for adaptive structures. Adv. Funct. Mater. 2018, 28, 1705727. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, C.; Lei, M.; Yang, L.; Zhang, Q.; Chen, H.; Qi, H.; Fang, D. Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Phys. Rev. Appl. 2019, 11, 044074. [Google Scholar] [CrossRef]
- Chen, T.; Mueller, J.; Shea, K. Integrated design and simulation of tunable, multi-state structures fabricated monolithically with multi-material 3D printing. Sci. Rep. 2017, 7, 45671. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Bilal, O.; Shea, K.; Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. USA 2018, 115, 5698–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balk, M.; Behl, M.; Wischke, C.; Zotzmann, J.; Lendlein, A. Recent advances in degradable lactide-based shape-memory polymers. Adv. Drug Deliv. Rev. 2016, 107, 136–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timoshenko, S. Analysis of bi-metal thermostats. JOSA 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, C.; Sim, K.; Chen, J.; Li, Y.; Xing, Y.; Yu, C.; Song, J. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Adv. 2018, 8, 025215. [Google Scholar] [CrossRef]
- Ding, Z.; Weeger, O.; Qi, H.J.; Dunn, M. 4D rods: 3D structures via programmable 1D composite rods. Mater. Des. 2018, 137, 256–265. [Google Scholar] [CrossRef]
- Peraza Hernandez, E.; Hartl, D.; Lagoudas, D. Active Origami Modeling, Design, and Applications; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Bodaghi, M.; Noroozi, R.; Zolfagharian, A.; Fotouhi, M.; Norouzi, S. 4D printing self-morphing structures. Materials 2019, 12, 1353. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T. Modeling Shape-Memory Behavior of Polymers. Polym. Rev. 2013, 53, 130–152. [Google Scholar] [CrossRef]
- Xin, X.; Liu, L.; Liu, Y.; Leng, J. Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites. Acta Mech. Solida Sin. 2019, 32, 535–565. [Google Scholar] [CrossRef] [Green Version]
- Tobushi, H.; Hashimoto, T.; Hayashi, S.; Yamada, E. Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 1997, 8, 711–718. [Google Scholar] [CrossRef]
- Pieczyska, E.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates. Smart Mater. Struct. 2016, 25, 085002. [Google Scholar] [CrossRef]
- Tobushi, H.; Okamura, K.; Hayashi, S.; Ito, N. Thermomechanical constitutive model of shape memory polymer. Mech. Mater. 2001, 33, 545–554. [Google Scholar] [CrossRef]
- Morshedian, J.; Khonakdar, H.; Rasouli, S. Modeling of shape memory induction and recovery in heat-shrinkable polymers. Macromol. Theory Simulations 2005, 14, 428–434. [Google Scholar] [CrossRef]
- Di Marzio, E.; Yang, A. Configurational entropy approach to the kinetics of glasses. J. Res. Natl. Inst. Stand. Technol. 1997, 102, 135–157. [Google Scholar] [CrossRef]
- Buckley, C.; Prisacariu, C.; Caraculacu, A. Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 2007, 48, 1388–1396. [Google Scholar] [CrossRef]
- Williams, M.; Landel, R.; Ferry, J. Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Phys. Rev. 1955, 98, 1549. [Google Scholar] [CrossRef]
- Sun, L.; Huang, W. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 2010, 6, 4403–4406. [Google Scholar] [CrossRef]
- Yu, K.; Xie, T.; Leng, J.; Ding, Y.; Qi, H. Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 2012, 8, 5687–5695. [Google Scholar] [CrossRef]
- Qi, H.; Dunn, M. Thermomechanical Behavior and Modeling Approaches. In Shape-Memory Polymers and Multifunctional Composites; Leng, J., Du, S., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Yu, K.; Ge, Q.; Qi, H. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat. Commun. 2013, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Qi, H. Temperature memory effect in amorphous shape memory polymers. Soft Matter 2014, 10, 9423–9432. [Google Scholar] [CrossRef]
- Westbrook, K.; Kao, P.; Castro, F.; Ding, Y.; Qi, H. A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater. 2011, 43, 853–869. [Google Scholar] [CrossRef]
- Diani, J.; Gilormini, P.; Frédy, C.; Rousseau, I. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 2012, 49, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Guo, J.; Nguyen, T. Modeling the multiple shape memory effect and temperature memory effect in amorphous polymers. RSC Adv. 2015, 5, 416–423. [Google Scholar] [CrossRef]
- Azoug, A.; Vasconcellos, V.; Dooling, J.; Saed, M.; Yakacki, C.; Nguyen, T. Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer 2016, 98, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Dolynchuk, O.; Kolesov, I.; Androsch, R.; Radusch, H.J. Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation. Polymer 2015, 79, 146–158. [Google Scholar] [CrossRef]
- Westbrook, K.; Mather, P.T.; Parakh, V.; Dunn, M.; Ge, Q.; Lee, B.; Qi, H. Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater. Struct. 2011, 20, 1–9. [Google Scholar] [CrossRef]
- Oates, W.; Wang, H. A new approach to modeling liquid crystal elastomers using phase field methods. Model. Simul. Mater. Sci. Eng. 2009, 17, 064004. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Zeng, Z.; Huo, Y. Thermomechanical modeling of the thermo-order–mechanical coupling behaviors in liquid crystal elastomers. J. Mech. Phys. Solids 2010, 58, 1907–1927. [Google Scholar] [CrossRef]
- Maute, K.; Tkachuk, A.; Wu, J.; Qi, J.; Ding, Z.; Dunn, M. Level Set Topology Optimization of Printed Active Composites. ASME J. Mech. Des. 2015, 137, 111402. [Google Scholar] [CrossRef]
- Tolley, M.; Felton, S.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R. Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating. Smart Mater. Struct. 2014, 23, 94006. [Google Scholar] [CrossRef]
- Kwok, T.H.; Wang, C.; Deng, D.; Zhang, Y.; Chen, Y. Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures. ASME J. Mech. Des. 2015, 137, 111413. [Google Scholar] [CrossRef]
- Fuchi, K.; Ware, T.H.; Buskohl, P.R.; Reich, G.W.; Vaia, R.A.; White, T.J.; Joo, J.J. Topology Optimization for the Design of Folding Liquid Crystal Elastomer Actuators. Soft Matter 2015, 11, 7288–7295. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Li, R.; Du, Z.; Zhang, W.; Zhu, Y.; Sun, Z.; Guo, X. Kirigami Pattern Design of Mechanically Driven Formation of Complex 3D Structures Through Topology Optimization. Extrem. Mech. Lett. 2017, 15, 139–144. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing Topology Optimization Explicitly and Geometrically a New Moving Morphable Components Based Framework. ASME J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Geiss, M.; Boddeti, N.; Weeger, O.; Maute, K.; Dunn, M. Combined Level-Set-XFEM- Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation. ASME J. Mech. Des. 2019, 141, 051405. [Google Scholar] [CrossRef]
- Hamel, C.; Roach, D.; Long, K.; Demoly, F.; Dunn, M.; Qi, H. Machine-learning based design of active composite structures for 4D printing. Smart Mater. Struct. 2019, 28, 065005. [Google Scholar] [CrossRef]
- Clifford, D.; Zupan, R.; Brigham, J.; Beblow, R.; Whittock, M.; Davis, N. Application of the dynamic characteristics of shape-memory polymers to climate adaptive building facades. In Proceedings of the 12th Conference of Advanced Building Skins, Bern, Switzerland, 2–3 October 2017; pp. 171–178. [Google Scholar]
- Li, J.; Duan, Q.; Zhang, E.; Wang, J. Applications of Shape Memory Polymers in Kinetic Buildings. Adv. Mater. Sci. Eng. 2018, 2018, 7453698. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.; Truby, R.; Fitzgerald, D.; Mosadegh, B.; Whitesides, G.; Lewis, J.; Wood, R. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalet, G. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators 2020, 9, 10. https://doi.org/10.3390/act9010010
Scalet G. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators. 2020; 9(1):10. https://doi.org/10.3390/act9010010
Chicago/Turabian StyleScalet, Giulia. 2020. "Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview" Actuators 9, no. 1: 10. https://doi.org/10.3390/act9010010
APA StyleScalet, G. (2020). Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 9(1), 10. https://doi.org/10.3390/act9010010