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Abstract: Shape memory polymers (SMPs) are smart materials capable of changing their shapes in a
predefined manner under a proper applied stimulus and have gained considerable interest in several
application fields. Particularly, two-way and multiple-way SMPs offer unique opportunities to realize
untethered soft robots with programmable morphology and/or properties, repeatable actuation,
and advanced multi-functionalities. This review presents the recent progress of soft robots based
on two-way and multiple-way thermo-responsive SMPs. All the building blocks important for the
design of such robots, i.e., the base materials, manufacturing processes, working mechanisms, and
modeling and simulation tools, are covered. Moreover, examples of real-world applications of soft
robots and related actuators, challenges, and future directions are discussed.

Keywords: soft robotics; soft actuators; 4D printing; shape memory polymers; two-way shape
memory effect; multiple-way shape memory effect

1. Introduction

Nowadays, soft matter is increasingly being used in robotic technology thanks to its great
flexibility, light weight, and inexpensive mass production [1]. In fact, robots based on soft materials
(widely known as soft robots) are able to withstand large deformations, perform complex motions,
conform to arbitrary geometries, and sustain impacts without damage, and thus they are particularly
suited to those applications where a safe interaction with people, fragile objects, and the environment
is needed [2]. Accordingly, there has been a boost of research activities dedicated to the design
and fabrication of more and more advanced soft robots for several sectors; e.g., automotive [3],
aerospace [4,5], wearable [6], medical [7–11], and renewable energy [12] sectors.

When interacting with dynamic environments, soft robots able to tune and adapt their
morphology, properties, and/or functionalities by “evolving” in a programmable spatial and temporal
sequence, become essential. Moreover, greater adaptability can be achieved in soft robots having
a reversible response, in order to be retrieved once the task is completed. From now on, the term
“programmable soft robots” will be used to denote such an advanced class of soft robots. A simple
example is given by applications that require continuous contact with people (e.g., hands-on assistive
devices, exoskeletons, and haptics), where soft robots have to dynamically and actively apply the right
force during the interaction, and reversibly return to the initial state once the interaction is completed.

A variety of actuation mechanisms have been explored to generate the desired motion/force
under applied external stimuli in programmable soft robots; see, e.g., [13,14]. Generally, such actuation
mechanisms are chosen depending on the performances needed (in terms of, e.g., actuation strain/force,
response time, fatigue resistance, stiffness), application size scale, operating environment (e.g., in
solution, air), stand-alone or tethered power sources, and additional required functionalities (e.g.,
biocompatibility, biodegradability, self-healing properties).
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Common actuation approaches to programmable soft robotics rely on pneumatic actuators [15,16],
mechanisms promoting important structural changes (e.g., multi-stability, buckling) [17,18]
or inhomogeneous deformations (e.g., multilayer systems) [19,20], architected materials (e.g.,
auxetics) [21], folding/cutting theories (e.g., origami, kirigami) [22,23], bio-inspired and bio-mimetics
architectures [19,24,25], reinforced systems [26], and granular jamming [27]. Generally, such robots are
constructed from materials as polymers, hydrogels, and elastomers [28].

From the reviewed literature, two major considerations can be focused on. First, several actuation
mechanisms enabling programmable morphology, properties, and/or functionalities of robots have
been studied and realized. Second, such actuation mechanisms are often irreversible or enabled
through an external intervention, as physical tethers, onboard electronics, or batteries. The latter aspect
limits the development and utilization of programmable soft robots, especially in remote applications,
since physical tethers or onboard parts may occupy space, may be heavy and difficult to miniaturize,
and may complicate the design process [29].

Therefore, new advances are needed to generate untethered, programmable soft robots that
exhibit repeatable actuation and multi-functionalities.

To that end, stimuli-responsive soft materials offer a valid solution, since they are able to respond
autonomously to an external stimulus (e.g., temperature, magnetic field, humidity) by significant
or articulated shape/property/function variations [30,31]. Some contributions to the development
of untethered, programmable soft robots that exhibit repeatable actuation and multi-functionalities
exist and involve: (i) shape changing soft materials, in which shape-shifting is encoded in the original
material structure and allows simple (intrinsically-reversible) shape variations (e.g., [32]); (ii) shape
memory soft materials, in which shape-shifting is not encoded in the original material structure, but
programming of complex shape variations is allowed on demand (e.g., [31,33]). In the latter case, shape
variations are typically not reversible; however, different solutions offering a powerful combination
of reversible and programmable shape variations (e.g., [31,33] and references therein) have recently
attracted wide attention. Among these solutions, those based on shape memory polymers (SMPs) are
promising to expand the range of application of programmable soft robots. SMPs are materials able
to “remember” one or more temporary shapes from a permanent shape. According to the number of
remembered shapes, SMPs can be classified into three main categories: (i) one-way (or dual) SMPs
that have one permanent shape and one temporary shape; (ii) multiple-way (or multi(n)) SMPs that
have one permanent shape and (n − 1) temporary shapes; (iii) two-way SMPs that are capable of
a reversible transition between to temporary shapes. It is clear that multiple-way and two-way
SMPs have great potentiality for the development of untethered robotic systems with programmable
and reversible responses. Furthermore, SMPs display several additional advantageous properties
that may be exploited to increase the functionalities of soft robots, such as low cost and density,
high deformability, easy processability, synthetic flexibility, biocompatibility/biodegradability, and
tailorable properties.

Motivated by the discussed framework, the present paper aims to give an overview about the
current state-of-the-art on multiple-way and two-way SMPs and their application to programmable
soft robotics. The attention will be dedicated to thermo-responsive SMPs, which are the most used
and can be remotely actuated. Particularly, thermo-responsive SMPs activated through both direct
and indirect heating will be discussed. The review will cover all the building blocks important for
the design and fabrication of these robots, i.e., the base materials, manufacturing processes, working
mechanisms, and modeling and simulation tools (Figure 1). Examples of real-world applications of
soft robots and related actuators from the literature will be described and discussed, together with
current challenges and future advancements.
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Figure 1. Programmable soft robots: fundamental building blocks, discussed in the present work,
for their design and fabrication.

The paper is organized as follows. Section 2 will present the types of materials featuring the
multiple-way and two-way shape memory effect. Then, Section 3 will discuss main approaches for the
manufacturing of soft robots based on these materials, with a special focus on 3D printing techniques.
Section 4 will present several real-world soft robotic examples from the literature, discussed in terms
of working mechanisms, while Section 5 will describe the theoretical and numerical approaches for
the modeling of these materials and for the design of such robots. Conclusions will be presented
in Section 6.

2. Materials

The present section reviews multiple-way and two-way thermo-responsive SMPs. For the purpose
of comparison, one-way SMPs are also recalled. The description covers macroscopic material features,
macromolecular architecture, and experimental characterization. For a comprehensive review on
SMPs, the reader is referred to [34–47].

2.1. One-Way SMPs

One-way (or dual) thermo-responsive SMPs display the capability of recovering a “permanent"
shape (i.e., the shape provided through conventional processing) from a “temporary” shape (i.e., the
shape provided through a process named “programming”) when heated; such a capability is known
as one-way shape memory effect (SME).

The one-way SME is correlated to a transition temperature (e.g., the glass transition, melting,
crystallization, or clearing temperature, depending on the polymer type) and results from a
combination of an applied thermo-mechanical history (i.e., the shape memory cycle) with polymer
macromolecular architecture.

The shape memory cycle is illustrated in the first row of Figure 2 for a SMP featuring the one-way
SME and having a transition temperature denoted as Ttrans. The material is first formed into a
permanent shape through conventional processing. Then, the material is subjected to a cycle, called
“programming”, in order to be “fixed” in a temporary shape. The programming step consists of:
(i) heating the material up to a temperature T1 > Ttrans, which results in an increase of the mobility
of polymer molecular chains; (ii) deforming the material, which induces an orientation of polymer
molecular chains and a macromolecular conformation variation, accompanied by a change in entropy,
leaving the polymer in a high-energy unstable state; (iii) cooling the material down to T2 < Ttrans,
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limiting molecular mobility, trapping the high-energy state, and fixing the temporary shape; and (iv)
removing the applied load. Typically, temperatures T1 and T2 are 15–40 ◦C, respectively, above and
below the transition temperature (determined by using differential scanning calorimetry). Finally,
heating the material back to T1 restores the mobility of the chain segments and allows the recovery of
the permanent shape from the temporary shape. As it can be observed from the figure, both fixation of
the temporary shape and recovery of the permanent shape are determined by Ttrans. Moreover, the
one-way SME is a non-reversible feature: after the permanent shape is recovered, the SMP cannot
reverse to its temporary shape through cooling, but a new programming step is needed to re-fix the
temporary shape. The shape memory cycle can be indefinitely repeated and is limited only by the
possible degradation of the material [44,48].
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Figure 2. Shape memory cycle in dual, triple, and two-way SMPs. For two-way SMPs, the shape
memory behavior under stressed and stress-free conditions is represented.

Polymer macromolecular architecture consists of a cross-linking structure (net-points) and
reversible switching structures (thermal switches). Net-points determine the permanent shape
and can be formed by, e.g., molecular entanglement, a crystalline phase, chemical cross-linking,
an interpenetrated network, or a cyclodextrin polymer’s inclusion (see [34,38,44,46] and references
therein). Thermal switches are responsible for the temporary shape fixation and permanent shape
recovery that are determined by the transition temperature, Ttrans, since chain mobility is trapped
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(fixing) and liberated (recovery) by cooling below Ttrans and heating above Ttrans, respectively. Several
reversible switching structures have been employed, such as crystallization/melting transition,
vitrification/glass transition, liquid crystal anisotropic/isotropic transition, reversible molecule
cross-linking reactions, and supramolecular association/disassociation (see [34,38,46] and references
therein). According to the nature of both reversible thermal transition and cross-linking, one-way SMPs
can be divided into chemically and physically cross-linked polymers (see [46] and references therein).

Several polymers exhibit the one-way SME with different performances, as discussed in Section 2.4.
In general, the type of SMP is chosen according to the temperature range in which the application
under investigation operates [49].

2.2. Multiple-Way SMPs

Multiple-way (or multi(n)) thermo-responsive SMPs display the capability of recovering a
“permanent” shape (i.e., the shape provided through conventional processing) from two or more
“temporary” shapes (i.e., the shapes provided through a process named “programming”) when heated;
such a capability is known as multiple-way SME.

Similarly to the one-way SME, the multiple-way SME results from an appropriate combination of
the polymeric macromolecular architecture with an applied thermo-mechanical history (i.e., the shape
memory cycle).

Two strategies can be adopted to design multiple-way thermo-responsive SMPs: (i) incorporating
two or more well-separated transition temperatures into the system (e.g., glass, melting, or clearing
crystalline transitions); (ii) introducing a broad (either glass or melting) transition temperature range.

In the case of strategy (i), the SMP may feature a multiple-way SME after a multi-step
programming process, which allows one to fix multiple temporary shapes at a temperature below the
respective transition temperatures. To clarify the concept, the shape memory cycle is illustrated in the
second row of Figure 2 for a triple SMP having two well-separated transition temperatures, denoted
as Ttrans,1 and Ttrans,2, such that Ttrans,1 > Ttrans,2. The material is first formed into a permanent shape
through conventional processing. Then, the material is “fixed” in a first temporary shape and in a
second temporary shape by applying two separate and consecutive programming cycles. The two
programming steps are similar to those described for the one-way SMP in Section 2.1 and consist
of: (i) heating the material up to a temperature T1 > Ttrans,1 > Ttrans,2; (ii) deforming the material;
(iii) cooling the material down to Ttrans,2 < T2 < Ttrans,1; (iv) removing the applied load; (v) deforming
the material; (vi) cooling the material down to T3 < Ttrans,2 < Ttrans,1; (vii) removing the applied load.
Typically, temperature T1 is 15–40 ◦C above Ttrans,1; T2 is 10–40 ◦C below Ttrans,1 and 10–40 ◦C above
Ttrans,2; and T3 is 15–40 ◦C below Ttrans,2 [50]. Finally, the permanent shape is recovered, sequentially
passing through the second temporary shape and the first temporary shape by heating the material
back to T1. As it can be observed from the figure, both fixation of the temporary shapes and recovery of
the permanent shape are determined by the two transition temperatures, Ttrans,1 and Ttrans,2. Moreover,
similarly to the one-way SME, the multiple-way SME is a non-reversible feature: after the permanent
shape is recovered, the SMP cannot reverse to its temporary shapes through cooling, but a new
programming step is needed. However, differently from one-way SMPs, multiple-way SMPs are able
to sequentially remember different shapes. Strategy (i) has been largely employed by using either
glass or melting transitions, e.g., in [51–64],and nematic-isotropic transformations of nematic network;
e.g., in [65–72]. Li et al. [50] proposed triple and quadruple SMPs by designing and synthesizing a
series of linear poly(lactic acid)-based copolymers containing a smectic liquid crystal in the main-chain,
having two distinguished glass transition temperatures and one liquid crystalline clearing transition
temperature. It is worth highlighting that multi-step programming is not a prerequisite for achieving
the multiple-way SME and one-step programming has been also applied (see [38,73,74] and references
therein). Recently, Zhou et al. [75] proposed an approach consisting of programming different shapes
at different stages of an isothermal crystallization process and in heating the SMP to recover the
permanent shape sequentially. The approach has been applied to semi-crystalline elastomers to
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achieve triple SMPs. Alternative methods for creating multiple, well-separated switching transitions in
one system consist of laminating two SMPs which have well-separated transition temperatures [76,77]
or of developing hybrid SMPs with multiple thermal transitions [78–81]. In general, when adopting
strategy (i), it should be taken into account that well-separated thermal transitions are required to
achieve outstanding multiple-way SME. Moreover, the failure strain of these polymers should be high
enough to allow for the fixation of multiple different temporary shapes.

In case of strategy (ii), the broad glass/melting transition may be considered a consecutive
distribution of a certain number of glass/melting transitions, and the recovery process of the permanent
shape from the different temporary shapes is triggered at various temperatures, corresponding to the
temperatures at which the material is deformed (often called “deformation temperatures”) [38,44].
In such a case, the SME is also known as temperature-memory effect (TME). Such an approach has
been largely employed to achieve multiple-way SMPs with a broad glass transition [82–92] and a broad
melting transition [93–95] as the switching transition. Mirtschin et al. [96] studied how programming
parameters such as the strain rate and temperature holding time at the deformation temperature
allow one to gain precise control of the TME in semi-crystalline polyurethanes and to design the TME
under stress-free recovery conditions. Some approaches use SMP-based composites or fillers to tune
polymer behavior [82,97]. Di Orio et al. [98] created a linear glass transition temperature gradient
within one SMP leading to a glass transition distribution throughout the polymer and a recovery in
the linear gradient direction. Such an approach (also known as “macroscale spatio-design”), consisting
of endowing a material with spatially-distributed transition temperatures, has attracted wide attention
(see [47,91,99–101] and references therein). In general, strategy (ii) does not require modification in the
chemistry of the system; however, it is difficult to fabricate a SMP with the capability of more than
four or five shape transitions. In order to achieve quintuple SME, Li et al. [102] incorporated another
additional melting transition into a SMP already possessing a broad glass transition.

2.3. Two-Way SMPs

Two-way thermo-responsive SMPs display the capability of a reversible shape effect between
two different configurations on the application of an on-off stimulus (i.e., a cooling-heating cycle).
Depending of the polymer type, other on-off stimuli may be employed. They may be of the same
type (such as different light wavelengths) or of different types (such as light-cooling or electric
current-cooling). Such a capability is known as two-way SME and can be either induced by a constant
applied stress or under stress-free conditions.

Similarly to the one-way and multiple-way SME, the two-way SME results from an appropriate
combination of polymer macromolecular architecture with an applied thermo-mechanical history (i.e.,
the shape memory cycle).

In particular, the two-way SME under constantly applied stress is a feature shown by two classes
of SMPs: (i) semi-crystalline networks (i.e., semi-crystalline crosslinked polymers); (ii) liquid crystalline
elastomers (LCEs).

In order to achieve the two-way SME in semi-crystalline networks, i.e., class (i), the simultaneous
presence of a crystallizable phase and chemical crosslinks is a strict requirement. The two-way
SME under constant tensile stress is based on the elongation of the polymer network, caused
by an entropy elasticity effect in the rubbery region and the crystallization upon cooling below
the crystallization temperature, and on the contraction of the polymer network, caused by the
melting of the temporary-oriented crystalline domain upon heating above the melting temperature.
The elongation is also defined as “crystallization-induced elongation” (CIE), while the contraction as
“melting-induced contraction” (MIC). The shape memory cycle is illustrated in the third row of Figure 2
for a two-way SMP having a crystallization and a melting temperature, respectively, denoted as Tc

and Tm. The material is first formed in a permanent shape through conventional processing. Then,
the material is heated up to a temperature T1 > Tm and deformed with an external stress to induce a
preorientation of the chain segments and to obtain the first reversible temporary shape. Subsequently,
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the material is cooled down to a temperature T2 < Tc under constant applied stress to induce the CIE
and to obtain the second reversible temporary shape. Such an elongational process during cooling is
composed of a first elongation, which is associated with the chains’ reorientation to satisfy the entropic
elasticity constraints as a consequence of the elastic behavior of rubber, and of a second elongation,
which is caused by crystallite formation under stress, possibly accompanied by the orientation of the
newly formed crystallites [103]. The second elongation is ascribed to a structural evolution process,
where crystallite formation, by tending to relax the stress, promotes a further stretching, in order
to satisfy the constant stress condition [103,104]. Typically, temperatures T1 and T2 are 15–40 ◦C,
respectively, above Tm and below Tc. Subsequent heating back to T1 determines crystallite melting
and a MIC of the material back to the first reversible temporary shape. The complete or almost
complete recovery of the first reversible temporary shape generally depends on material and testing
conditions [105]. The reversible transition from the first temporary shape and the second temporary
shape is then made possible through thermal cycling under constant stress. Similarly to the one-way
SME, the two-way SME is governed by the transition temperatures (in such a case, the crystallization
and melting temperatures) and is associated to entropic changes of the network. Contributions
to semi-crystalline networks can be found; e.g., in [105–113]. The approach was even extended to
triple SMPs in [114–117], where a reversible SME was shown over two transition temperatures, with
a reversible switching between three shapes under an applied stress. In general, semi-crystalline
networks are easy to synthesize and their transition temperatures can be tuned.

LCEs, i.e., class (ii), are shape-changing materials [30,118], that are often grouped into two-way
SMPs since they may exhibit the two-way SME. The two-way SME of LCEs results from the
combination of the arrangement of mesogenic units in the polymer network and the elastic properties
of the network itself. Liquid crystalline domains called poly-domains are usually disorderly oriented
with respect to each other, while liquid crystalline domains called mono-domains can be aligned in
a particular direction. Some of the physical methods of inducing mono-domains can be employed
for achieving the two-way SME; e.g., by applying an external stress. Similarly to semi-crystalline
networks, the formation of anisotropic mono-domains aligned in the stress direction undergoes an
elongation upon cooling below the clearing temperature and a contraction upon heating above the
clearing temperature. While in LCEs phase transitions are directly responsible for shape changes due
to the realignment of molecular groups throughout the material, in SMPs phase transitions cause the
material to be fixed in or recover a programmed shape. Contributions to LCEs can be found, e.g.,
in [65,119–125]. Such an effect has been extended to achieve a two-way triple SME in [126]. Although
two-way shape memory LCEs have attractive properties (especially high strain change), their synthesis
as well the tailoring of their high transition temperatures may be not trivial.

As anticipated above, the two-way SME does not necessarily require the presence of an applied
external stress, but, for polymers with a specific structure and thermo-mechanical history (i.e., the
shape memory cycle), it may be based on a provided internal stress. Such an effect, often referred
to as reversible bidirectional SME, leads to the possibility of achieving a self-standing reversible
actuation [44].

The two-way SME under stress-free conditions is a feature shown by the following classes
of SMPs: (i) chemically cross-linked semi-crystalline polymer networks with one broad melting
temperature or two melting temperatures; (ii) semi-crystalline polymer networks prepared via a
two-stage cross-linking method; (iii) thermoplastic semi-crystalline polymers with one broad melting
temperature or two melting temperatures.

According to Wang et al. [46], the polymers belonging to these classes generally contain
three phases: (1) a chemically cross-linked phase or a phase within a transition with the highest
transition temperature, holding the permanent shape; (2) a semi-crystalline or elastic amorphous
phase, determining the shifting-geometry and supplying a stretching tensile force when compressed
due to the contraction of the sample; (3) a semi-crystalline or liquid crystalline phase, causing actuation
through its melting and crystallization temperatures.
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Chemically cross-linked semi-crystalline polymer networks with one broad melting temperature
or two melting temperatures, i.e., class (i), require a programming procedure and a molecular
mechanism similar to those shown for the two-way SMPs under stress condition. Specifically, the
shape memory cycle is illustrated in the fourth row of Figure 2 for a two-way SMP having two
melting temperatures, denoted as Tm,1 and Tm,2, such that Tm,1 > Tm,2. The material is formed in
a permanent shape through conventional processing. Then, a programming step, similar to those
described for one-way and two-way SMPs, is applied and consists of: (i) heating the material up
to a temperature T1 > Tm,1 > Tm,2; (ii) deforming the material with an external stress to induce a
preorientation of the chain segments; (iii) cooling the material down to a temperature T2 < Tc to
introduce a skeleton of geometry-determining domains to the network and to fix a first reversible
temporary shape, associated to crystallite formation [44]; (iv) removing the applied load; (v) heating the
material up to Tm,2 > T3 > Tm,1 under stress-free conditions. Such heating causes partial melting and
permits it to achieve a partially recovered shape; i.e., a second reversible temporary shape. Subsequent
cooling back to T2 permits it to recover the first reversible temporary shape due to the crystallization
of the polymer chains along the direction of the internal tensile force produced by the unmelted
crystalline phase. The reversible passage from the first temporary shape and the second temporary
shape is made possible through thermal cycling between T2 and T3 and can be repeated hundreds
of times [127]. Typically, T1 is 15–40 ◦C above Tm,1, T2 is 15–40 ◦C below Tc, and T3 can be varied
depending on polymer type in order to tune the actuation mechanism [128]. If the material is heated
back to T1, the material is restored to its original permanent shape and reprogrammed to other shapes.
Similarly to the two-way SME under stress conditions, the stress-free two-way SME is governed by
the transition temperatures and is associated to entropic changes of the network. Contributions to
this class can be found, e.g., in [128–135], and show the possibility of achieving complex reversible
shape changes (e.g., elongation/contraction, bending/unbending, coiling/uncoiling), and of tuning
the actuation temperature.

The two-stage cross-linking method has been used to fabricate stress-free two-way SMPs, i.e.,
class (ii); e.g., in [136–138]. In this case, an interpenetrating network is obtained as a combination of
at least two polymeric networks, where a molecular interlacing exists in the matrix. Particularly,
a crystalline phase (responsible for the reversible shape shrinkage at high temperature) and an
elastomeric component (providing the stretching force for shape extension during the cooling process)
are present. By heating the system to the transition temperature of the crystalline network, the
crystalline phase leads to the shrinkage of the system and the elastomer component is compressed.
By cooling the system to the switching temperature of the crystalline network, crystallization takes
place in the force direction due to the elastic recovery of the elastomer component. These SMPs have
low transition temperatures and do not lose the two-way SME at high temperatures. From a practical
point of view, the two-stage cross-linking method does not require applying a constant tensile stress
and the programming process. However, the temporary shapes are fixed and cannot be erased upon
heating. Moreover, at present, such a class of SMPs has achieved simple reversible shape changes
of elongation and contraction. This method has been also extended to LCEs and their composites
in [139,140]. Recently, two-way SMPs containing dynamic covalent bonds have been prepared by
using a method similar to the two-stage cross-linking method (see [46,141] and references therein).
SMPs cross-linked by dynamic covalent bonds are advantageous due to their reprocessibility, good
mechanical properties, and good recoverability [46].

For several years, chemically cross-linked polymer networks have been considered to be a
necessary condition for the two-way SME in order to prevent the flowing of the polymer above Tm.
However, some thermoplastic polymers, i.e., class (iii), have been shown to feature the two-way SME
under stress-free condition [142–146]. Thermoplastic polymers may be reprocessed and reused, thereby
avoiding the synthesis of a new polymer. However, the reversible shape change of this class of SMPs is
not as good as chemically cross-linked networks.
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It is worth recalling that an alternative approach for developing two-way SMPs, or shape-changing
materials in general, consists of composites, hybrids, or laminates. Two-way shape memory
composites/laminates usually have two layered polymeric networks made of both SMPs, or both
non-SMPs, or a layer of a SMP and a non-SMP [147–153]. In this case, heating creates unbalanced
mechanical stresses arising from different thermal or mechanical properties or from the SME (if SMPs
are used). This strategy has also allowed for the development of laminated polymers with double SMP
layers exhibiting two-way SME also under stress-free condition [154–156]. The main disadvantages of
such an approach are related to its preparation that may be sophisticated, and the limited reversible
strain change (generally lower that 10%).

2.4. Experimental Testing

Appropriate characterization methods on both macroscopic and molecular/morphological levels
of SMPs are needed for the design of soft robotic systems.

The macroscopic behavior of SMPs is generally evaluated through cyclic thermo-mechanical tests
and depends on the thermo-mechanical loading conditions, such as the strain/heating/cooling rate,
deformation and fixation temperatures, temperature-controlled condition, strain-holding condition,
and cyclic loading, in addition to the polymer macromolecular architecture. Tensile tests performed
with standard testing machines equipped with a thermo-chamber are the most-often used; however,
other methods for the characterization of SME have been applied, such as bending, torsion,
compression, or three-point flexural tests. Tests under cyclic thermo-mechanical loading are important
for characterizing the actuation behavior and material degradation. Thermal properties are generally
investigated by using differential scanning calorimetry and dynamic mechanical thermal analysis.
In general, the tests for the characterization of the SME must be chosen and tailored to the specific
SMP category and the complexity of the shape change under investigation. For a detailed review on
thermo-mechanical characterizationand on morphology investigation of SMPs, the reader is referred
to [44,45,157–159].

The results of experimental testing are generally presented in stress-temperature-strain diagrams.
Apart from standard mechanical metrics, two parameters can be used to describe shape memory
performances: (i) the shape fixity ratio, which quantifies the ability of the SMP to maintain an imposed
mechanical deformation after the load is removed; (ii) the shape recovery ratio, which quantifies
the ability of the SMP to recover the permanent shape. Other quantities, as the recovery rate or the
recovery temperature range, can be also obtained.

Several works have investigated one-way SMPs, including cyclic thermo-mechanical tests
consisting of a programming module under strain or stress control and a recovery module under
stress-free or constant-strain condition. Efforts to improve one-way SMP properties have led to
materials that may: (i) be strained up to about 800% before failure; (ii) have elastic-energy densities
between 10 and 2000 MJ/m3 for strains approaching 200%; (iii) exert stresses between 0.1 and 10 MPa;
(iv) have response times greater than 10 s; (v) high shape fixity and recovery ratios [3]. It is also
important to highlight that thermo-responsive SMPs may exhibit high variations in the elastic modulus
over the operational temperature range (being softer above the transition temperature and harder
below the transition temperature) [3,33]. Several fillers, such as carbon nanotubes (CNTs), carbon
black, polypyrrole, and nickel powders, or additives, such as plasticizer molecules, have been used
to increase thermal and electrical conductivity or functionalities, mechanical strength, and recovery
stresses, and to tune shape memory behavior (see [3,160–162] and references therein).

Compared to one-way SMPs, certain multiple-way SMPs (e.g., physically-crosslinked
thermoplastic polymers) may exhibit lower shape fixity and shape recovery ratios, due to long-range
molecular chain slippage and damage of physical crosslinks integrity, especially under high strain [92].
Moreover, the recovery behavior of these SMPs is susceptible to stress relaxation and creep.
Accordingly, some studies have been proposed to design SMPs with multiple-SMEs reaching strains of
about 1000% with high shape fixity and shape recovery. Additional functionalities, such as self-healing
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properties [163,164], moisture-sensitive SME [165], and biodegradability [166], have been included in
multiple-way SMPs.

Several studies have been dedicated to the characterization of two-way SMPs under tensile stress,
while few studies are available on the compressive stress condition [47]. In fact, much attention has
been devoted to the synthesis and thermo-mechanical characterization of semi-crystalline networks
exhibiting the two-way SME under tensile stress [105,106,149,167]. Particularly, the two-way SME
was shown to be tailored by the applied stress, the cooling/heating rate, and the crosslink density,
leading to materials capable of two-way reversible strain variations between 10% and 100% under the
application of moderate stresses (typically, between hundreds of kPa and a few MPa) [103]. Moreover,
recovery effects were shown to be sharp and fast, since they are triggered by melting instead of being
activated by glassy-rubbery transition. The thermal expansion coefficient of the material was also
shown to play an important role during the two-way process, especially under low levels of applied
stress [105]. Studies on LCEs showed that the material may: (i) be strained up to 400% before failure;
(ii) have elastic-energy densities between 3 and 56 kJ/m3; (iii) exert stresses between 0.01 and 0.12 MPa;
(iv) have an elastic modulus varying between 0.1 and 5 MPa; (v) response times greater than 10 s [33].
Additional functionalities, such as biodegradability [168] or improved performances [169], have been
included.

Experimental studies concerning the two-way SME under stress-free condition, in terms of
mechanical performances, generated internal stresses, and the influence of both crystallinity degree and
cross-linking density on the reversible absolute strain change, are still limited. Generally, recoverable
actuation strains between 10% and 20% are achieved.

Finally, it is worth mentioning that thermally-induced SMPs may be directly triggered by
heating with hot gas or water, but indirect heating has been also used (see [3,33,46] and references
therein). For example, SMPs with functional fillers may be triggered by light, electricity, magnetic
fields, microwaves, or ultrasound, but they are still intrinsically triggered by heat, since different
forms of energy are converted into heat through the fillers (see [33,46,47,170–172] and references
therein). The molecular mechanisms and the programming process are equal to those described for
direct heating-triggered SMPs in previous sections. Indirect heating has many advantages, such as
local heating and remote control. Many studies have been also devoted to the achievement of a
complex, well-controlled, shape recovering, and spatially-controllable multiple-way SME by exploiting
selective (direct/indirect) heating of predeformed SMPs or homogeneous (direct/indirect) heating
of predeformed structurally inhomogeneous SMPs (see [38,46] and references therein). Obviously,
other types of SMPs that are not activated by temperature changes exist (e.g., light-induced or
chemo-responsive SMPs), but will be not discussed in the present manuscript (for details, see [3,33,46]
and references therein).

3. Manufacturing

The SMPs discussed in Section 2 and related soft robots are generally manufactured through
standard fabrication techniques, such as shape extrusion, injection molding, laser cutting, or
soft lithography [34,173,174]. Recently, alternative methods, such as dual-curing [175] and
electrospinning [176,177], have been employed to obtain more complex structures. Such techniques
may require manual intervention, post-processing, and lengthy iterations for assembly, thereby limiting
the realization of complex robotic systems.

To avoid costly and time-consuming aspects of current fabrication techniques, researchers have
explored alternative approaches for the efficient and effective manufacturing of soft robots, such as 3D
printing [13,178]. The advantage in using 3D printing lies in the possibility to realize soft systems with
geometrically complex structures in a single-step, without the need for external joints, adhesives, or
fasteners. In addition, soft robots can be produced with high accuracy (of the order of sub-millimeters).

In the last few years, considerable advances in soft robotic technology have been made thanks to
4D printing, which allows one to realize structures with arbitrarily complex or customized architectures,
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capable of evolving their shape, properties, or functionalities along time (denoting the 4th dimension)
under the application of proper stimuli [178–189]. 4D printing is particularly advantageous to save
space for storage and transportation purposes and enlarges the range of applications to those areas in
which a dynamical configurational change is required [190], as in the case of soft robotics.

One of the most important ingredients of 4D printing is the stimuli-responsive material [191,192].
Several printing techniques have been developed for the manufacturing of SMP-based robots, including
those based on material extrusion (e.g., fused deposition modeling, direct inkjet writing), material
jetting (e.g., PolyJet), and VAT photopolymerization (e.g., digital light projection, stereolithography,
projection micro-stereolithography) [33,183,188].

In 2014 Tibbits [193] first published a work reporting one-way SMPs 3D printed by using
Stratasys’s Connex machine offering multi-material PolyJet printing. After 2014, several works on
one-way SMPs with increasing functionalities appeared. As an example, a one-way SMP was printed
and structured in [194], by exploiting digital light projection technology and using a photocurable
polycaprolactone (PCL). Recently, Invernizzi et al. [195] printed a SMP featuring both the one-way
SME and self-healing properties, via digital light projection technology.

More recently, some contributions on 3D printed multiple-way and two-way SMPs
were published.

Chen et al. [196] proposed a blending strategy to prepare tunable SMP blends featuring quadruple
SME with the feasibility of 3D printing. The monofilament was then applied to a commercial fused
deposition modeling 3D printer. Yu et al. [197] used the material under the name Gray 60 in
the multi-material Polyjet 3D printer (Stratasys, Connex Object) material library, having a broad
glass transition and exhibiting the multiple-way SME. More recently, Inverardi et al. [198] used
stereolitography to print multiple-way SMP structures. The effect was possible thanks to the broad
glass transition of a commercial photopolymer, known under the name Clear FLGPCL02 and provided
by Formlabs company.

Yuan et al. [199] showed the potentialities of 3D printed LCEs, compared to standard fabrication
techniques. Recently, voxelated LCEs, capable of actuating reversibly and exhibiting large work
capacities, have been produced in thick-film geometries (about 1 mm thick) via 3D printing [200–204].

As discussed in previous sections, the multiple-way and two-way SME can be achieved in
composite structures. Accordingly, Ge et al. [205] first realized composites featuring the SME by using
a multi-material Polyjet 3D printer (Stratasys, Connex Object). Following this idea, the first example of
3D printed multiple-way SMPs was provided by Wu et al. [206], who fabricated layered composite
structures with SMPs having different glass transition temperatures, by using a multi-material Polyjet
3D printer. In particular, the work focused on the commercial material under the name TangoBlack
plus and on digital materials known as DM8530 and DM9895. More recently, Ge et al. [207] used a
multi-material system based on projection microstereolithography to create composite structures based
on photo-curable methacrylate based copolymer networks. The advantages of this technique are the
high resolution achievable (1 µm), quick processing time, and automated material exchange. Similarly,
Mao et al. [208] developed SMP-based composite structures exhibiting the two-way SME by combining
layers of SMPs and hydrogels. Again the multi-material Polyjet 3D printer (Stratasys, Connex Object)
was used, with the commercial materials under the names Grey60 and Tangoblack. The idea of realizing
composite structures featuring a multiple-way SME was extended to fused deposition modeling 3D
printing [209]. Sun et al. [209] created tri-layer, functionally-graded composites made of polylactic
acid (PLA) plasticized with different amounts of poly(ethylene glycol) (PEG) across the gradient, to
achieve multi-shape memory and localized actuation properties.

In order to avoid the need of the programming step required by most of the approaches discussed
above, some authors proposed generating an internal stress in the SMP to be used to recover the
permanent shape [201,208,210–212]. To generate the internal stress, Ding et al. [211] imparted an
eigenstrain during the printing process (the so-called “printing strain”) in SMP/elastomer bilayer
structures and named the approach “direct 4D printing”. The multi-material Polyjet 3D printer
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(Stratasys, Connex Object), and commercial materials known as TangoBlackPlus or TangoPlus, as the
elastomer and VeroClear as the SMP, were used. Such an approach allows one to print simple
geometries (e.g., two-dimensional flat sheets), thereby reducing the quantity of support material
during printing that can transform to a complex geometry (e.g., a three-dimensional object) without the
need of post-printing SMP programming. Such a concept was later extended to polyurethane-based
SMP structures in [213] and to polylactic acid polymeric structures in [214], printed via fused deposition
modeling. Printing parameters, such as filament plying angle, component porosity, thickness, and
transition temperatures, were used to control the shrinkage in [214]. Zhang et al. [215] exploited
heat-shrinkable properties of polylactic acid (PLA) SMPs to activate shape changing without a shape
programming step. In fact, heating the polymer above its transition temperature can release the
internal strain energy that is imparted in the polymer during the extrusion-based 3D printing process.
Mao et al. [208] used both SMPs and hydrogels responding, respectively, to thermal and aqueous
stimuli, to switch between two stable configurations. Hydrogel swelling force was used to induce
internal stress in the SMP. Moreover, a layer of hydrogel between the standard SMP and the elastomer
bilayer allowed the structure to shift from one-way actuation to two-way actuation. A multi-material
Polyjet 3D printer (Stratasys, Connex Object) and commercial materials known as Grey60 and
Tangoblack were used. The frontal polymerization process was employed by Zhao et al. [216,217],
who exploited the change in the intensity of photo-polymerization to create spatially-varying material
parameters in single-material structures.

4. Working Mechanisms and Applications

Two basic working mechanisms are generally adopted for realizing programmable soft robots
based on multiple-way and two-way SMPs, and consist of using: (i) one single material and (ii) multiple
materials. Such working mechanisms exhibit similar shape memory behaviors; however, the
macroscale structure of the robot and the localization of the applied thermal stimulus can be designed to
introduce specific behaviors and to achieve complex motions, including linear stretching/contraction,
circular expansion, walking, swimming, and folding. In the following, both mechanisms are reviewed
and several real-world examples of soft robots and related actuators are presented and discussed. As is
noted, common macroscale structures range from simple geometries (e.g., beams or strips) to complex
geometries based on multi-stability/buckling concepts, reinforced/layered systems, folding/cutting
theories, and metamaterial design. A short discussion is dedicated to the realization of multi-functional
soft robotic systems.

4.1. Single-Material Mechanism

Soft robots based on one single SMP receive their properties from those featured by the constituent
material itself, from their macroscale structure, and from the localization of the thermal stimulus.
In general, the realized soft robots are able to perform tasks such as linear stretching/contraction,
coiling, twisting, and folding. Such robots have drawn great interest due to their simple manufacturing
process that does not require, e.g., post-processing or the use of multi-material 3D printers.

While several examples, such as grippers and drug delivery systems, employ one-way SMPs
(see [13,178,218,219] and references therein), applications based on the multiple-way SME are
still limited. Among these, Bodaghi et al. [220] combined polyurethane-based SMPs, hot-cold
programming, and fused deposition modeling 3D printing technology to engineer dual and triple
SMP self-bending grippers and self-shrinking/tightening staples. Yu et al. [197] used the material
under the commercial name Gray 60 in the multi-material Polyjet 3D printer (Stratasys, Connex Object)
to realize triple SME in trusses or box-shaped structures, capable of linear stretching/contraction.
Pandini et al. [221] printed, through stereolitography, auxetic structures capable of hierarchical motion
as a consequence of the broad glass transition region of the employed commercial polymer (known
under the name Clear FLGPCL02). Auxetic structures were able to perform autonomous sequential
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in-plane and out-of-plane motions, as shown in Figure 3. All these structures [197,221] can be
potentially used to increment the motion capabilities of soft robotics systems.

Figure 3. Temperature-memory effect (TME) exploited for achieving hierarchical motion of a 3D printed
auxetic cell. The cell is subjected to: (a) a two-step programming consisting of an early out-of-plane
bending at T = 100 °C, and a subsequent stretching at T = 40 °C; (b) shape recovery. Reprinted
from [221], copyright 2020, with permission from Elsevier.

To date, limited examples of soft actuators and robots based on two-way SMPs are available.
Behl et al. [127] exploited the two-way SME of cross-linked copolymer networks to design
self-programmable reversible window shades. Chemically cross-linked poly(ethylene-co-vinyl
acetate) two-way SMPs were processed into precursor fibers through twist insertion to manufacture
artificial muscles in [222,223]. Two-way SMP particles that are able to switch shape reversibly in
response to temperature were utilized as drug carriers in [224]. Free-standing copolymer networks
with two types of crystallizable domains were used in [128] to fabricate grippers that reversibly
catch and release a penny and reversible fixator devices that collapse upon heating and expand
when cooled. Ge and Zao [225] demonstrated a strategy that allows one to realize thermal
phase transition-based polymer actuators exhibiting autonomous, self-sustained motion with no
need for temperature switching. In particular, Ge and Zao used the crosslinked semi-crystalline
random copolymer poly(ethyleneco-vinyl acetate) (EVA) proposed in [127,128], which displays
the TME. Ge and Zao verified that, when a sufficiently thick specimen is in contact with a hot
substrate surface, a temperature gradient, formed due to heat diffusion along the thickness direction,
leads to a superficial melting-induced contractile force that pushes the specimen up, and once
cooled in the air, yields a crystallization-induced extensional force that flattens the specimen on
the substrate surface to reactivate the motion cycle. Such continuous motion is thus driven by
thermal energy and without on/off temperature switching. Actuation with over a thousand cycles
of motion was achieved and demonstrated in arch-shaped actuators capable of rotating a wheel
and of walking. Farhan et al. [226] realized a manikin equipped with a twisted SMP actuator
arm able to non-continuously rotate between three different arrow positions when exposed to
a linear change in temperature under stress-free conditions. The SMP was synthesized from
cross-linked blends of poly(ε-caprolactone) (PCL) and poly(ethylene-co-vinyl acetate) (PEVA), where
the two phase-segregated regions had distinct melting and crystallization temperatures, and different
crystallization kinetics. Thermally-responsive liquid crystal networks were used to manufacture a
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gripper mimicking the self-peeling mechanism of gecko toe pads in [227], while microscale LCE
actuators were realized in [228,229]. López-Valdeolivas et al. [203] reported the manufacturing of
complex reversible shape-morphing LCE-based structures, such as auxetics and spiral-like devices,
through ink printing. Ahn et al. [230] developed a technique to pattern liquid crystal molecules
in a LCE. As a result, the patterned LCE had different active deformation modes when subjected
to various external stimuli, and thus was able to perform different functions. de Haan et al. [231]
described the fabrication, characterization, and modeling of liquid crystalline polymer network films
with a multiple patterned 3D nematic director profile, exhibiting complex mechanical actuation under
change of temperature or pH. Three-dimensional features were programmed into flat sheets of LCEs
by introducing topological defects in [232]. Using this approach, it was possible to align and crosslink
individual groups of mesogens in arbitrarily complex patterns, with demonstrations that include an
initially flat heated sheet able to lift a load 147 times its own weight with a stroke of about 3000%.

Other application fields of two-way SMPs, such as microfluidic pumps [233], surfaces to modulate
optical properties in optical devices [234], biomedical devices [138,235], and selective filtration
membranes [236], are available (see [47] and references therein).

By exploiting the approaches that avoid the need of the programming step, discussed in Section 3,
self-folding cone and doubly curved shell structures [213], self-folding origami [214,217], an
instability-driven pop-up [214], an sequential shape-shifter [214], grippers [216], tetrahedron/box
light-emitting diode devices folded by triangular sheets [216], and self-folding lattices [215,237]
were realized.

Besides using direct heating, indirect heating was used by Fang et al. [238], who proposed to use
both the crosslinked semi-crystalline random copolymer poly(ethyleneco-vinyl acetate), introduced
in [127,128] and possessing the TME, and aniline black as near-infrared light triggered photothermal
filler. In this way, Fang et al. were able to realize light-triggered releasing devices and grippers in
aqueous media. Liu et al. [239] developed self-folding thin sheets using unfocused light. The sheets
were made of optically transparent, prestrained polystyrene that shrank in-plane if heated uniformly.
Black inks patterned on the polymer sheet provided localized absorption of light to heat the polymer
and to cause sheet folding into a three-dimensional object. Yang et al. [240] prepared light-sensitive
structures by dispersing CNTs into LCEs with exchangeable links (xLCEs). Photothermal effects
induced fast exchange reaction in xLCEs, and as a result, dynamic 3D structures were fabricated
by irradiating a stretched film under stress for a few seconds. Different alignment modes were
written/programmed in one film, as shown in Figure 4. Light-manipulated processes could be
carried out at a broad temperature range, even at extremely low temperatures (e.g., −130 °C in
liquid nitrogen vapor). The geometry information could be selectively or completely erased by
light and the dynamic 3D structures could be reshaped or reconfigured. The materials also enabled
photo-healing of microcracks and recycling. Photo-induced sequential shape-shifting was also achieved
by Liu et al. [241], who reported a simple method, using a desktop printer, to pattern inks of different
light absorptivity as hinges on homogeneously prestrained polymer (e.g., polystyrene) sheets. Light
was absorbed by the inks and thus heated the prestrained polymer across the sheet thickness, which
caused the relief of strain to induce folding. This approach enables sequential sheet folding with respect
to time and space by controlling light wavelength and ink color. Yang et al. [161] used fused filament
fabrication to 3D print light-triggered thermo-responsive SMP structures using polyurethane and
carbon black, where the carbon black helps to absorb radiation from light sources. Recently, in [242], a
crystalline SMP with thermo- and photo-reversible bonds have been used to create programmable
single-component origami-based cranes, capable of wing flapping motions, and elephants, showing
curling and uncurling actions.
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Figure 4. Reversible actuation of CNT-xLCE dynamic 3D structures: (A) film, (B) triangle, (C) chair,
(D) “Hercules” (18.5 mg) lifts four balls (72.6 mg), (E) tripod, (F) six-petal flower. Reproduced with
permission from [240]. Copyright 2016, American Chemical Society.

Peng et al. [243] showed that a three-dimensional porous CNT sponge can be used as a built-in
integral conductive network to provide internal, homogeneous, Joule heating for SMPs, thereby
significantly improving the mechanical and thermal behavior of SMPs. As a result, a fast response
and large exerting forces (with a maximum flexural stress of 14.6 MPa) were demonstrated during
shape recovery.

4.2. Multi-Material Mechanism

Soft robots made of multiple materials, such as composites, hybrids, or laminates, receive their
properties from the interaction between the constituent materials, from their macroscale structure, and
from the localization of the thermal stimulus. In fact, different types of SMPs are generally combined
together or with inactive/active materials, and direct/indirect heating creates unbalanced mechanical
stresses determined by the thermal or mechanical properties or the relative positions of the base
materials in the macroscale structure, which drive the shape change of the structure itself. Soft robots
based on multiple materials have drawn great interest due to the possibility of achieving very complex
motions, such as walking, rolling, and swimming. However, they require multi-material fabrication
techniques or post-processing.

Common designs belonging to this class are, e.g., fiber-reinforced composites, layered
structures/metamaterials, multi-stable structures, and origami-based composites (see [3,33,183,244]
and references therein). Origami theory is especially suited to simplify the design space of soft robots
through hinge-based actuation, since compliant, energy-dense actuators are placed at creases, where
deformations are localized, whereas stiffer structural elements work as planar facets [245].

Shape-changing sequences can be realized in composite structures containing spatially-distributed
SMPs [246,247]. As an example, Yu et al. [246] used the 3D printing technique of thermally-triggered
epoxy-based UV curable SMPs to realize self-locking or self-closing devices. By properly specifying
material properties in different sections, Yu et al. demonstrated that the deformed SMP component
can successfully return back to the permanent shape in a predefined sequence, thereby exhibiting a
multiple-way SME.
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Two-way shape memory laminates were prepared by combining a programmed
polyurethane-based SMP film with an un-elongated elastic polymer film in [149]. Two-way
shape memory behavior, i.e., bending upon heating and reverse bending upon cooling, was
observed. Peng et al. [243] studied the construction of a double-layer composite structure for
bidirectional actuation, in which the shape change is dominated by the temperature-dependent
exerting force from the top and bottom layer, alternately. An inchworm-type robot was demonstrated.
Belmonte et al. [248] developed free-standing SMP actuators by using laminating “thiol-epoxy”-based
glassy thermoset and stretched liquid-crystalline network films. The actuators were capable of
complex motions, such as S-type bending. Kotikian et al. [29] firstly created untethered, soft robots that
can reversibly shape-morph and propel itself in response to temperature changes, via multi-material
3D printing. Specifically, LCE hinges, interconnecting structural polymeric tiles, were printed to
produce active structures that exhibit large, repeatable, and programmable deformations. Among the
design structures, a self-twisting origami polyhedron with three stable configurations and a rollbot
that assembles into a pentagonal prism and self-rolls were realized.

Yuan et al. [249] proposed a thermo-mechanically triggered two-stage pattern switching approach,
where an amorphous polymer and a flexible elastomer were used. Periodic structures, such as square
meshes, re-entrant honeycombs, and tetrachiral lattices, were designed to explore the influence of
material layout within the structure and a smart window which can react to the ambient temperature
by self-opening was realized.

Zhao et al. [250] combined structural design and multi-material 3D printing to design soft periodic
lattice metamaterials containing two distinct deformation modes, controlled by zig-zagged topological
defects and thermal activation of the responsive materials, respectively. By regulating the deformation
mode with ambient temperature, the effective Poisson’s ratio of the lattice was intentionally switched
between negative values and positive values.

Chen et al. [251] combined multi-stability, SME, and multi-material 3D printing to design bistable
Von Mises truss actuators. Each actuator was used as unit actuator for the fabrication of a more complex
multi-stable actuator based on hierarchical principles. Particularly, a deployable space frame structure
and a structure with varying Gaussian curvature was realized. Later, Chen et al. [252] combined
these actuators with 3D printed shape memory strips, which respond to different temperatures, to
create time-sequenced linear actuators and deployable structures. In particular, an untethered, soft
swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics
was designed. Locomotion of the robot was achieved by using SMP actuators that harnessed the
bistable elements, triggered by surrounding temperature changes. As a proof of concept, Chen et al.
showed the ability to program a vessel, which could autonomously deliver a cargo and navigate back
to the deployment point. Commercial SMPs, named VeroWhitePlus and FLX9895, were used.

By exploiting the approaches that avoid the need of the programming step, discussed in Section 3,
self-folding layered actuators [211], bending strips carrying load of 25–50 g [208], and self-folding
periodic macro-structures, strips, and origami [208] were realized.

4.3. Multi-Functional Mechanisms

Recently, the concept of shape-shifting has been extended to the concept of function-
or property-shifting, such as tissue maturation, degradability, self-healing, color shifting,
optics/conductivity properties (see [188] and references therein). The inclusion of additional
functionalities is very promising for the development of autonomous soft robots.

The contributions combining multiple-way and two-way SMPs with the listed function or
property shifting features are still limited in the current literature. As an example, for biomedical
and pharmaceutical application, SMPs need to be biocompatible with non-toxic degradation products
which require switching temperatures in the physiological range [253]. The possibility to print simple
actuators for soft robotics with good mechanical properties, one-way SME, and self-healing capabilities
has been shown in [195] (see Figure 5).
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Figure 5. SME of a polycaprolactone dimethacrylate (PCLDMA)-2-ureido-4[1H]-pyrimidinone motifs
(UPyMA) repaired sample. The sample was (a) cut, (b) repaired after thermal treatment, (c) deformed,
and (d–f) heated up to 70 ◦C recover the permanent shape. Reprinted from [195], copyright 2018, with
permission from Elsevier.

Thanks to the advantage of realizing customized and personalized bio-material-based structures,
4D bioprinting also shows great potential for future biomedical applications [188].

5. Modeling and Simulation

Soft robotics systems require a throughout design to achieve the desired change in shape,
properties, or functionalities and to optimize the performances in terms of, e.g., deformations, forces,
material distribution, geometry, and response times. In this framework, modeling and simulation are
fundamental to support the design and avoid costly and time-consuming experiments. Moreover, with
the advent of 3D printing techniques, a numerical tool is particularly needed to predict the targeted
evolution in time and space of the printed robots.

However, the prediction of the kinematics of these systems is not straightforward, because the
majority of soft robots cannot be adequately described by linear models, since they involve many
degrees of freedom, material and geometric nonlinearities, shape memory behavior, and need to satisfy
a diverse set of boundary conditions. It is therefore particularly needed to formulate reliable modeling
and simulation tools for the control of such systems in real-world applications.

Generally, main design approaches consist of: (i) analytical models, (ii) numerical simulations
based on constitutive models, and (iii) topology optimization methods.

The first approach involve the formulation of analytical relationships. Common approaches
are, for examples, those based on classical beam theory for layered structures [212,217,254–256] and
origami theory [208,257].

The second approach consists of the constitutive modeling of SMPs and in their implementation
into simulation software. Through constitutive modeling, several SMEs can be understood and
predicted, such as isothermal and non-isothermal stress-strain responses, shape memory and
rate-dependent behavior, and the effect of loading rate on material behavior [258]. Macroscopic,
mesoscopic, and microscopic models; molecular dynamic simulations; and quantum-chemical
calculations have been proposed for SMPs in both one and three dimensions and under both small
and large deformation. For a detailed review, the reader is referred to [36,259,260]. In particular,
macroscopic models appear to be a powerful tool for engineering applications, thanks to their easy
numerical implementation and fast computations. Currently, macroscopic models for SMPs are mainly
based on two approaches: thermoviscoelastic and phase transition approaches. The choice of the
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approach to use is related to the type of polymer and to the amount of details needed to accurately
describe material behavior, in relation to the application under investigation.

The thermoviscoelastic approach introduces rheological models, consisting of springs, dashpots,
and frictional elements, to describe the underlying mechanisms of the SME, based on the
temperature-dependence of the molecular mobility and of the relaxation time.

Early thermoviscoelastic models were developed for one-way SMPs under small strain framework.
Particularly, rheological models with temperature-dependent viscosity and modulus parameters
were first developed for SMPs with one glassy transition temperature [261–263] and consisted in a
parallel combination of the Prandl and Maxwell models. Morshedian et al. [264] first developed
a thermoviscoelastic model for SMPs with one melting transition temperature. The Arrhenius
equation [265] was first used to describe the increase in the viscosity by decreasing the temperature
in glassy SMPs, while Buckley et al. [266] used the Williams-Landel-Ferry (WLF) equation [267]
to describe the temperature dependence of the retardation time in rubbery SMPs. Sun et al. [268]
extended the thermoviscoelastic modeling approach to qualitatively illustrate the underlying physics
in thermo-responsive SMPs exhibiting the TME. Yu et al. [269] improved the work by Sun et al. [268]
by proposing a quantitative analysis for the TME. They employed the one-dimensional standard
linear solid model under small strains, proposed by Qi et al. [270], to illustrate the multiple relaxation
processes of the polymer chains. The mechanical elements consist of an equilibrium branch and several
non-equilibrium branches placed in parallel. The equilibrium branch is a linear spring to represent the
equilibrium behavior, and the non-equilibrium branches are Maxwell elements where an elastic spring
and a dashpot are placed in series to represent the viscoelastic response. Among the non-equilibrium
branches, one represents the relaxation behavior of the glassy mode, while the remaining are used to
represent the relaxation modes of polymer chains in the rubbery state. As the temperature is increased,
for a given temperature, different numbers of branches (or relaxation modes) become shape memory
active or inactive, leading to the observed multiple SME. Above the transition temperature, the WLF
equation was used, while, below such temperature, the Arrhenius equation was adopted. Such a
model was used in [271,272], while extensions to finite strain can be found in [273,274]. Xiao et al. [275]
applied a three-dimensional finite strain, nonlinear viscoelastic model to describe the shape memory
behaviors of Nafion, which has a broad glass transition region. Compared to Yu et al. [269], who
assumed an even distribution of relaxation times, the authors developed a method to obtain the
parameters of the relaxation spectrum from the master curve of the relaxation modulus. The model
was applied to program several switchable pattern transformations in Nafion-based membranes using
finite element simulations. Viscoelastic approaches have been applied to describe the rate-dependent
behavior of the stretch-induced polydomain-monodomain transition of LCEs, e.g., in [276].

The thermoviscoelastic approach has been applied to soft robotics and actuators, e.g., focusing on
direct 4D printing [211], single-material structures [215],and composite structures [208,252].

The phase transition approach assumes the materials as composed of two phases to reproduce
the overall macroscopic behavior of SMPs. During the phase transition a material fraction is in one
state, while the remainder is in the other state. Internal variables and constraints are used to describe
the transition between the two phases.

While several contributions are available to model the behavior of one-way SMPs (see [260]
and references therein), little attention has been dedicated to the constitutive modeling of the
two-way SME. In fact, few works considering the two-way SME under stress conditions in
semi-crystalline crosslinked polymers are available [103,104,167,277,278]. Westbrook et al. [104]
presented a one-dimensional finite-strain model based on the concept of phase evolution and
validated on experimental curves related to semi-crystalline thermosets made of covalently crosslinked
poly-(cyclooctene). Dolynchuk et al. [167,277] proposed a small-strain approach based on the Gaylord
theory of the stress-induced crystallization of crosslinked polymers and validated on covalently
crosslinked high-density polyethylene. The paper by Scalet et al. [103] proposes a one-dimensional
phenomenological model in the finite-strain framework, based on a phase transition approach.
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The model is simple, easy to implement, and based on parameters with a physical interpretation.
The model is validated on experiments on semi-crystalline networks based on poly(ε-caprolactone) and
demonstrates model capability in describing material features such as the effect of the crosslink density
on SME, the dependence of microstructural evolution on applied load and heating/cooling rate, and
the presence of thermal strains. Contributions to model the two-way SME in LCEs are currently
limited. Generally, phase field modeling framework or thermo-mechanical theories are developed,
e.g., [279,280].

To the author’s knowledge, no works are currently available to model the stress-free
two-way SME.

The phase transition approach has been applied to soft robotics and actuators, e.g., focusing
on to the approaches that avoid the need of the programming step (see Section 3) [212,213] and to
single-material structures [219].

The third approach consists of a design methodology based on a topology optimization approach
and has been recently applied to 4D printed structures made of SMPs capable of programmable
shape-shifting. Maute et al. [281] proposed a level set topology optimization approach to determine
the spatial arrangement of one-way SMPs within a passive matrix needed to achieve a target shape.
A similar approach based on classical origami designs was demonstrated in [282] for self-folding
composite structures. Kwok et al. [283] employed shape optimization to determine the optimal
layout of cuts to design 4D printed active origami and kirigami structures. Fuchi et al. [284] used
a density-based method, employing a simplified linear elastic model, to optimize the layout of
self-folding monolithic LCE actuators. Xue et al. [285] combined the concept of moving morphable
components by Guo et al. [286] with a genetic algorithm for the topology optimization of post-buckled
three-dimensional kirigami structures. Even if each of these approaches greatly reduces the number
of design variables, only a subspace of all possible designs is explored. Recently, in [287], a new
multi-material density-based topology optimization formulation has been used to determine materials’
placement in structures undergoing large deformation and realized through direct 4D printing.
The formulation employs a hyperelastic thermo-mechanical model combined with an higher-order
extended finite element method formulation. The shape of the structure is defined by a level set method.

Finally, it worth recalling that a recent approach based on machine-learning has been proposed
in [288] for the design of active composite structures. An evolutionary algorithm was used in
conjunction with the finite element method and the approach was validated on simple beam geometries,
capable of achieving target shape shifting responses.

6. Conclusions

The present paper has reviewed the current progress on soft robots based on multiple-way and
two-way SMPs. Attention has been dedicated to the constituent materials, manufacturing techniques,
design strategies, applications, and modeling/simulations tools. According to the reviewed papers,
the following concluding considerations can be made:

• Materials: (i) Several routes for the synthesis of multiple-way and two-way SMPs are available
from the literature, and they differ in terms of preparation method, reprocessibility, achieved
shape memory, and mechanical properties. (ii) SMP properties influence the overall robustness
and performance of soft robots. Accordingly, SMPs with tunable transition temperatures, high
thermal stability, and good mechanical properties in the operational temperature range are highly
desired. For example, soft robots for biomedical applications require a switching transition
temperature close to the body temperature, while those used for aerospace applications require
high transition temperatures. (iii) Appropriate characterization methods on both macroscopic
and molecular/morphological levels should be performed for a comprehensive knowledge of
the polymer under investigation. In general, shape memory behavior characterization at the
macroscopic level must be chosen and tailored to the specific SMP category and application
under investigation. (iv) Two-way SMPs under constant stress or stress-free conditions are very
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promising for achieving reversible actuation in soft robots and require extensive research to
improve actuation strains/forces and their mechanical performances. In particular, material
behavior under cyclic loading should be investigated.

• Manufacturing: (i) Most of SMP-based components are fabricated through conventional
techniques rather than through 3D printing, due to the lack in the variety of SMPs that are
usable in 3D printing and the limited applicability of existing 3D printing methods to new SMPs.
In fact, polyjet printing and extrusion printing are the most used 3D printing techniques for
SMP-based soft robotics: polyjet printing allows for the use of materials with tunable mechanical
properties, but has, e.g., high equipment costs, several resin properties’ requirements, and limited
material choices; extrusion-based printing is versatile, but has, e.g., slow printing speed and
relatively low resolution. Extensive research should be dedicated to the development of two-way
and multiple-way SMPs for 3D printing and to the analysis of suitable 3D printing methods.
(ii) Composite structures present several advantages to enhance the actuation complexity.
However, some 3D printing techniques (e.g., stereolithography) cannot enable multi-material
printing. Therefore, modifications to current techniques should be investigated. (iii) Novel inks
should be studied to enable 3D printed multi-functional SMPs.

• Working mechanisms and applications: (i) Few examples of real-world programmable soft
robots, based on both single-material and multi-material working mechanisms, have been
proposed in the literature to be used, mainly, for biomedical (e.g., drug delivery systems) and
aerospace (e.g., deployable or exploration components) applications. Further efforts should be
made to increase the range of application fields. As an example, two-way SMP-based actuators
are promising for dynamic building facades and energy savings [289,290]. However, extensive
research should focus on material properties, e.g., extension rate, transparency, recovery stress,
operational temperatures, and long-term stability. (ii) Several examples of components (e.g.,
in the form of trusses, periodic structures, compliant mechanisms), capable of programmable
motion, have been proposed in the literature. All these components can be potentially integrated
into more complex soft robotics systems to achieve advanced capabilities. (iii) Both shape-change
speed and response time are key factors for actuation and depend on materials properties,
geometrical design, and actuation stimulus. More efforts should be done to improve these
two features. (iv) Complex and controllable movements are preferred in advanced robotics
applications. Localized heating provides a simple and efficient method to this purpose, and
should be investigated in two-way and multiple-way SMPs. (v) More studies should be
dedicated to the combination of two or more stimuli into one single polymer to achieve the
two-way or multiple-way SME. In this way, SMPs may adapt better to the overall environmental
conditions. Moreover, function or property-shifting features, in addition to shape-shifting, should
be investigated in order to increase the autonomy of soft robots. To this end, integrated design
and fabrication strategies should be developed, as proposed, e.g., by Wehner et al. [291]. (vi) The
application potential for two-way and multiple-way SMPs appears unlimited. However, real
examples are still limited due to the lack of standards, especially related to 3D printed SMPs, and
of manufacturing techniques that allow the realization of complex components.

• Modeling and simulation: (i) Theoretical models and design methodologies are still limited for
4D printed components and are needed to accurately predict and optimize programmable soft
robots. (ii) Constitutive models for multiple-way and two-way SMPs are fundamental for the
simulation analysis of parts. More efforts should be done in this regard for both viscoelastic and
phase transition approaches, especially in the three-dimensional finite strain framework and for
two-way LCEs and two-way SMPs under stress-free conditions.

It can be concluded that the realization of soft robots requires interdisciplinary research and
technological advances in various fields, including 3D printing, chemistry, material science, as well as
novel design and modeling tools.
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