Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms
Abstract
:1. Introduction
2. Strapdown LOS Stabilization Algorithm for the Risley Prism System
2.1. Coordinate System Transformation Relationship
2.2. Direction Cosine Matrix
2.3. Calculation of the Actual Target Guidance Position
3. Principles of LOS Stabilization and Target Tracking for the Risley Prism on the Motion Platform
4. Experiment
4.1. Disturbance Rejection Capability Analysis of the Risley Prism System
4.2. LOS Stabilization Experiment of the Risley Prism System on the Motion Platform
4.3. Fast and High-Precision Target Tracking Experiment of the Risley Prism System on the Motion Platform
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricks, T.P.; Burton, M.M.; Cruger, W.; Reynolds, R. Stabilized electro-optical airborne instrumentation platform (SEAIP). Proc. SPIE Int. Soc. Opt. Eng. 2004, 5268, 202–209. [Google Scholar]
- Lu, P.G.; Shou, S.J. High accuracy tracking technology and its application in ship-borne electro-optical system. J. Appl. Opt. 2006, 27, 1002–2082. [Google Scholar]
- Xu, T.; Li, B.; Liu, T.; Xue, L.T.; Chen, T. Initial calibration of tracking turntable for vehicle-borne opto-electronic tracking system. Opt. Precis. Eng. 2013, 21, 782–789. [Google Scholar]
- Song, J.; Sun, G.; Zhou, D.; Huimin, C. Line-of-sight stabilization techniques for mirror electro-optical platform. Infrared Laser Eng. 2015, 44, 1904–1911. [Google Scholar]
- Li, X.; He, M.; Tuo, W.; Wang, T.; Han, J.; Wang, X. Review on inertial reference unit applied to photoelectric tracking and pointing system of moving platform. Opt. Precis. Eng. 2024, 32, 401–421. [Google Scholar] [CrossRef]
- Kennedy, P.J.; Kennedy, R.L. Direct versus indirect line of sight (LOS) stabilization. Ieee Trans. Control Syst. Technol. 2003, 11, 3–15. [Google Scholar] [CrossRef]
- Marshall, G.F. Risley Prism scan patterns. In Conference on Optical Scanning—Design and Application; SPIE: Denver, CO, USA, 1999; pp. 74–86. [Google Scholar]
- Ostaszewski, M.; Harford, S.; Doughty, N.; Hoffman, C.; Sanchez, M.; Gutow, D.; Pierce, R. Risley Prism Beam Pointer. In Conference on Free-Space Laser Communications VI; SPIE: San Diego, CA, USA, 2006. [Google Scholar]
- Fan, D.P.; Zhou, Y.; Lu, Y.F.; Hei, M.; Xiong, F.T.; Li, K. Overview of beam steering technology based on rotational double prisms. Chin. Opt. 2013, 6, 136–150. [Google Scholar]
- Zhou, Y.; Lu, Y.; Hei, M.; Xiong, F.R.; Li, K.; Fan, D.P. Analytic solution of optical beam steering based on rotational double prisms. Opt. Precis. Eng. 2013, 21, 1373–1379. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y.; Hei, M.; Xiong, F.R.; Li, K.; Fan, D.P. Analytical Inverse Solutions for Rotational Double Prism Beam Steering. Opt. Precis. Eng. 2013, 21, 1693–1700. [Google Scholar] [CrossRef]
- Li, Y.J. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations. Appl. Opt. 2011, 50, 4302–4309. [Google Scholar] [CrossRef]
- Li, A.H.; Liu, X.S.; Sun, W.S. Forward and inverse solutions for three-element Risley prism beam scanners. Opt. Express 2017, 25, 7677–7688. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.Z.; Li, J.Y.; Huang, Y.M.; Wen, P.; Shi, J.; Xia, H.; Ma, R. Analytical inverse solution of a rotational achromatic Risley prism based on Fourier series fitting. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2023, 80, 20–29. [Google Scholar] [CrossRef]
- Duncan, B.D.; Bos, P.J.; Sergan, V. Wide-angle achromatic prism beam steering for infrared countermeasure applications. Opt. Eng. 2003, 42, 1038–1047. [Google Scholar]
- Tan, C.S.; Kong, W.; Huang, G.H.; Jia, S.; Liu, Q.; Han, Q.; Hou, J.; Xue, R.; Yu, S.; Shu, R. Development of a near-infrared single-photon 3D imaging LiDAR based on 64x64 InGaAs/InP array detector and Risley-prism scanner. Opt. Express 2024, 32, 7426–7447. [Google Scholar] [CrossRef]
- Huang, F.; Huang, D.H.; Yang, S.M.; Wang, P. Cooperative correction method for distortion and dispersion of deflected field of view in Risley-prism bionic-human-eye imaging systems. Opt. Express 2024, 32, 5444–5459. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Sun, L.P.; Hu, F.; Wang, Z.; Fan, S. Analysis on key issues of boresight adjustment in imaging tracking based on Risley prisms. Opt. Eng. 2020, 59, 123104. [Google Scholar] [CrossRef]
- Li, A.H.; Zhao, Z.S.; Liu, X.S.; Deng, Z. Risley-prism-based tracking model for fast locating a target using imaging feedback. Opt. Express 2020, 28, 5378–5392. [Google Scholar] [CrossRef]
- Li, J.; Yuan, L.; Xia, H.; Huang, Y.; Ma, R.; Shi, J.; Wen, P.; Peng, C. Rotation matrix error-decoupling methods for Risley prism closed-loop tracking. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2022, 76, 66–74. [Google Scholar] [CrossRef]
- Li, A.H.; Sun, W.S.; Liu, X.S.; Gong, W. Laser coarse-fine coupling tracking by cascaded rotation Risley-prism pairs. Appl. Opt. 2018, 57, 3873–3880. [Google Scholar] [CrossRef]
- Ma, X.G.; Zhang, W.B.; Tao, Y. Research on Real-Time Precision Control Technology of Composite Axis of Risley Double Prisms and FSM. Machinery 2022, 49, 22–31. (In Chinese) [Google Scholar]
- Wang, J.; Song, Y.; Liu, Y.; Zhang, J. Beam Compound Tracking Control Technology Based on Rotating Double Prism. Acta Photonica Sin. 2023, 52, 0211005. [Google Scholar]
- Xia, H.Y.; Xia, Y.X.; Yuan, L.Z.; Wen, P.; Zhang, W.; Ding, K.; Fan, Y.; Ma, H.; Li, J. Fast and high-precision tracking technology for image-based closed-loop cascaded control system with a Risley prism and fast steering mirror. Opt. Express 2024, 32, 8555–8571. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, J.; Xia, Y.; Yuan, L.; Zhang, W.; Ma, H.; Wen, P. Multivariable Decoupling and Nonlinear Correction Method for Image-Based Closed-Loop Tracking of the Risley Prisms System. Micromachines 2022, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, K.; Peng, Q.; Wang, Z.; Jiang, Y.; Fu, C.; Ren, G. Improvement of pointing accuracy for Risley prisms by parameter identification. Appl. Opt. 2017, 56, 7358–7366. [Google Scholar] [CrossRef]
Frequency | 0.05 Hz | 0.2 Hz | 0.5 Hz | 1 Hz |
---|---|---|---|---|
Disturbance rejection capability | −39.6 dB | −29.2 dB | −17.6 dB | −11.5 dB |
Sets | First Set (0.05 Hz) | Second Set (0.2 Hz) | Third Set (0.5 Hz) |
---|---|---|---|
Disturbance rejection capability | −32.8 dB | −28.8 dB | −17.3 dB |
Sets | With LOS Stabilization Algorithm | Without LOS Stabilization Algorithm |
---|---|---|
First set | 1.3445″ | 14.5627″ |
Second set | 2.6355″ | 22.9155″ |
Third set | 4.8551″ | 27.2986″ |
Target | Target 2 | Target 3 |
---|---|---|
4.44 s | 23.21 s | |
0.78 s | 0.86 s |
Target | Target 2 | Target 3 |
---|---|---|
1.573″ | 5.584″ | |
1.074″ | 1.401″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Xia, H.; Li, J.; Xia, Y.; Luo, Y.; Yuan, L.; Ma, H.; Wen, P.; Yuan, W. Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms. Actuators 2025, 14, 240. https://doi.org/10.3390/act14050240
Xia H, Xia H, Li J, Xia Y, Luo Y, Yuan L, Ma H, Wen P, Yuan W. Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms. Actuators. 2025; 14(5):240. https://doi.org/10.3390/act14050240
Chicago/Turabian StyleXia, Huayang, Hongfeng Xia, Jinying Li, Yunxia Xia, Yihan Luo, Liangzhu Yuan, Haotong Ma, Piao Wen, and Wenna Yuan. 2025. "Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms" Actuators 14, no. 5: 240. https://doi.org/10.3390/act14050240
APA StyleXia, H., Xia, H., Li, J., Xia, Y., Luo, Y., Yuan, L., Ma, H., Wen, P., & Yuan, W. (2025). Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms. Actuators, 14(5), 240. https://doi.org/10.3390/act14050240