Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,630)

Search Parameters:
Keywords = motion platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4435 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 (registering DOI) - 1 Aug 2025
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 3281 KiB  
Article
A Preprocessing Pipeline for Pupillometry Signal from Multimodal iMotion Data
by Jingxiang Ong, Wenjing He, Princess Maglanque, Xianta Jiang, Lawrence M. Gillman, Ashley Vergis and Krista Hardy
Sensors 2025, 25(15), 4737; https://doi.org/10.3390/s25154737 (registering DOI) - 31 Jul 2025
Abstract
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack [...] Read more.
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack of standardized pipelines for managing pupillometry data on a multimodal platform. Preprocessing pupil data in multimodal platforms poses challenges like timestamp misalignment, missing data, and inconsistencies across multiple data sources. To address these challenges, the authors introduced a systematic preprocessing pipeline for pupil diameter measurements collected using iMotions 10 (version 10.1.38911.4) during an endoscopy simulation task. The pipeline involves artifact removal, outlier detection using advanced methods such as the Median Absolute Deviation (MAD) and Moving Average (MA) algorithm filtering, interpolation of missing data using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), and mean pupil diameter calculation through linear regression, as well as normalization of mean pupil diameter and integration of the pupil diameter dataset with facial expression data. By following these steps, the pipeline enhances data quality, reduces noise, and facilitates the seamless integration of pupillometry other multimodal datasets. In conclusion, this pipeline provides a detailed and organized preprocessing method that improves data reliability while preserving important information for further analysis. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 8037 KiB  
Review
A Review of Multiscale Interaction Mechanisms of Wind–Leaf–Droplet Systems in Orchard Spraying
by Yunfei Wang, Zhenlei Zhang, Ruohan Shi, Shiqun Dai, Weidong Jia, Mingxiong Ou, Xiang Dong and Mingde Yan
Sensors 2025, 25(15), 4729; https://doi.org/10.3390/s25154729 (registering DOI) - 31 Jul 2025
Abstract
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent [...] Read more.
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent and site-specific spraying operations. This review systematically examines the synergistic dynamics across three hierarchical scales: Droplet–leaf surface wetting and adhesion at the microscale; leaf cluster motion responses at the mesoscale; and the modulation of airflow and spray plume diffusion by canopy architecture at the macroscale. Key variables affecting spray performance—such as wind speed and turbulence structure, leaf biomechanical properties, droplet size and electrostatic characteristics, and spatial canopy heterogeneity—are identified and analyzed. Furthermore, current advances in multiscale modeling approaches and their corresponding experimental validation techniques are critically evaluated, along with their practical boundaries of applicability. Results indicate that while substantial progress has been made at individual scales, significant bottlenecks remain in the integration of cross-scale models, real-time acquisition of critical parameters, and the establishment of high-fidelity experimental platforms. Future research should prioritize the development of unified coupling frameworks, the integration of physics-based and data-driven modeling strategies, and the deployment of multimodal sensing technologies for real-time intelligent spray decision-making. These efforts are expected to provide both theoretical foundations and technological support for advancing precision and intelligent orchard spraying systems. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 (registering DOI) - 31 Jul 2025
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

25 pages, 11507 KiB  
Article
Accurate EDM Calibration of a Digital Twin for a Seven-Axis Robotic EDM System and 3D Offline Cutting Path
by Sergio Tadeu de Almeida, John P. T. Mo, Cees Bil, Songlin Ding and Chi-Tsun Cheng
Micromachines 2025, 16(8), 892; https://doi.org/10.3390/mi16080892 (registering DOI) - 31 Jul 2025
Abstract
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of [...] Read more.
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of integrating industrial robots (IRs) with electric discharge machining (EDM) to create a non-contact, low-force manufacturing platform, particularly suited for the accurate machining of hard-to-cut materials into complex and large-scale monolithic components. In response to this potential, a novel robotic EDM system has been developed. However, the manual programming and control of such a convoluted system present a significant challenge, often leading to inefficiencies and increased error rates, creating a scenario where the EDM process becomes unfeasible. To enhance the industrial applicability of this robotic EDM technology, this study focuses on a novel methodology to develop and validate a digital twin (DT) of the physical robotic EDM system. The digital twin functions as a virtual experimental environment for tool motion, effectively addressing the challenges posed by collisions and kinematic singularities inherent in the physical system, yet with proven 20-micron EDM gap accuracy. Furthermore, it facilitates a CNC-like, user-friendly offline programming framework for robotic EDM cutting path generation. Full article
Show Figures

Figure 1

18 pages, 2599 KiB  
Article
Construction of Motion/Force Transmission Performance Index of a Single-Drive Serial Loop Mechanism and Application to the Vehicle Door Latch Mechanism
by Ziyang Zhang, Lubin Hang and Xiaobo Huang
Appl. Sci. 2025, 15(15), 8475; https://doi.org/10.3390/app15158475 - 30 Jul 2025
Abstract
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR [...] Read more.
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR mechanism possess 2 × 2 analytical solutions. In order to apply the current motion/force transmission performance index of the parallel mechanisms to the transmission performance analysis of the serial mechanisms, matching methods for chain-driving transference and the moving/fixed platform inversion are proposed. The solution of the performance index of a single-degree-of-freedom single-loop mechanism is equivalent to the solution of the input motion/force transmission performance index of a parallel mechanism. The overall motion/force transmission performance index of a single-loop mechanism is constructed, and the corresponding calculation procedure is defined. Chain-driving transference can be obtained through forward and inverse solutions of the RRURR mechanism. In response to the extremely high requirements for motion/force transmission performance of electric release mechanisms, the proposed overall motion/force transmission performance index is used to calculate for the input motion screw and corresponding transmission-force screw of the single-loop RRURR mechanism and obtain the overall motion/force transmission performance of the mechanism. The performance atlas of the mechanism shows that it has excellent motion/force transmission characteristics within the workspace. Using ADAMS simulation software, the driving torque required for electric releasing and cinching of a vehicle side-door latch mechanism with a single motor is analyzed. The overall motion/force transmission performance index of a single-loop mechanism can be applied to single-loop overconstrained mechanisms and non-overconstrained mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

24 pages, 3349 KiB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 68
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

21 pages, 3402 KiB  
Article
Model-Based Design of the 5-DoF Light Industrial Robot
by Yongping Shi, Tianbing Ma, Hao Wang, Tao Zhang, Xin Zhang, Huapeng Wu and Ming Li
Robotics 2025, 14(8), 103; https://doi.org/10.3390/robotics14080103 - 29 Jul 2025
Viewed by 69
Abstract
With the application and rapid development of light industrial robots, it is vital to accelerate the prototype design to fulfill the demands of shortening the robot’s production cycle, owing to rapid update iterations. Since the traditional design method cannot intuitively and efficiently check [...] Read more.
With the application and rapid development of light industrial robots, it is vital to accelerate the prototype design to fulfill the demands of shortening the robot’s production cycle, owing to rapid update iterations. Since the traditional design method cannot intuitively and efficiently check the deficiencies in the design preparation, the secondary design iterations will result in higher equipment costs, longer design cycles, and lower development efficiency. The MBD (model-based design), a full 3D (three-dimensional) design and manufacturing method, is proposed to swiftly finish the prototype design for solving the above problems. Firstly, the robot design preparation is completed with the design requirements to generate a robot 3D model. Secondly, several design methods are used: (i) the rapid prototyping, which includes the joint component verification and selection to further optimize the 3D model; (ii) the robot kinematics algorithm, which provides a theoretical foundation for the 3D model design; (iii) the robot kinematics simulation, which verifies the correctness of the kinematics algorithm. Finally, the feasibility of the MBD is verified by the robot prototype and the motion control system test. Taking the MBD to design a 5-DoF (five-degrees-of-freedom) robot as an example, the joint verification and selection are finished quickly and accurately to build the robot prototype without the need for secondary design processing, and the kinematic algorithm verified by the co-simulation platform can be used directly in the actual motion control of the robot prototype, which accelerates the development of the robot motion control system. Full article
(This article belongs to the Section Industrial Robots and Automation)
37 pages, 10198 KiB  
Article
Mooring Evaluation of a Floating Offshore Wind Turbine Platform Under Rogue Wave Conditions Using a Coupled CFD-FEM Model
by Bo Li, Hao Qin, Haoran Zhang, Qibin Long, Donghao Ma and Chen Xu
J. Mar. Sci. Eng. 2025, 13(8), 1443; https://doi.org/10.3390/jmse13081443 - 28 Jul 2025
Viewed by 180
Abstract
As the development of offshore wind energy transforms from coastal to deep-sea regions, designing a cost effective mooring system while ensuring the safety of floating offshore wind turbine (FOWT) remains a critical challenge, especially considering extreme wave environments. This study employs a model [...] Read more.
As the development of offshore wind energy transforms from coastal to deep-sea regions, designing a cost effective mooring system while ensuring the safety of floating offshore wind turbine (FOWT) remains a critical challenge, especially considering extreme wave environments. This study employs a model coupling computational fluid dynamics (CFD) and finite element method (FEM) to investigate the responses of a parked FOWT platform with its mooring system under rogue wave conditions. Specifically, the mooring dynamics are solved using a local discontinuous Galerkin (LDG) method, which is believed to provide high accuracy. Firstly, rogue wave generation and the coupled CFD-FEM are validated through comparisons with existing experimental and numerical data. Secondly, FOWT platform motions and mooring tensions caused by a rogue wave are obtained through simulations, which are compared with the ones caused by a similar peak-clipped rogue wave. Lastly, analysis of four different mooring design schemes is conducted to evaluate their performance on reducing the mooring tensions. The results indicate that the rogue wave leads to significantly enlarged FOWT platform motions and mooring tensions, while doubling the number of mooring lines with specific line angles provides the most balanced performance considering cost-effectiveness and structural safety under identical rogue wave conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 4667 KiB  
Article
Workspace Analysis and Dynamic Modeling of 6-DoF Multi-Pattern Cable-Driven Hybrid Mobile Robot
by Jiahao Song, Meiqi Wang, Jiabao Wu, Qing Liu and Shuofei Yang
Machines 2025, 13(8), 659; https://doi.org/10.3390/machines13080659 - 28 Jul 2025
Viewed by 192
Abstract
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight [...] Read more.
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight and high extensibility of cables, making them ideal for a wide range of applications, such as sports cameras, large radio telescopes, and planetary exploration. Considering the fundamental dynamic constraint imposed by the unilateral constraint of cables, the workspace and dynamic modeling for cable-driven robots require specialized study. In this paper, a novel cable-driven hybrid robot, which has two motion patterns, is designed, and an arc intersection method for analyzing workspace is applied to solve the robot workspace of two motion patterns. Based on the workspace analysis, a dynamic model for the cable-driven hybrid robot is established, laying the foundation for subsequent trajectory planning. Simulation results in MATLAB R2021a demonstrate that the cable-driven hybrid robot has a large workspace in both motion patterns and is capable of meeting various motion requirements, indicating promising application potential. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 1419 KiB  
Article
Dynamic Parameters Identification of Serial Robot Based on Dual Quaternion
by Guozhi Li, Dongjie Li, Xinyue Yin, Wenping Chen and Haibo Feng
Appl. Sci. 2025, 15(15), 8362; https://doi.org/10.3390/app15158362 - 27 Jul 2025
Viewed by 184
Abstract
This paper studies the dynamic parameters identification problem of load and linkages of a serial robot in the presence of model uncertainty. The dynamic parameters of load and linkages of a serial robot have been identified through a combination procedure, which is useful [...] Read more.
This paper studies the dynamic parameters identification problem of load and linkages of a serial robot in the presence of model uncertainty. The dynamic parameters of load and linkages of a serial robot have been identified through a combination procedure, which is useful for different platforms of serial robot systems. The purpose of this paper is to propose a dynamic parameter identification method for a serial robot based on a dual quaternion. Using the information of the force and torque of the load obtained by the six-dimensional force sensor installed on the end-effector of the robot, the dynamics parameter identification matrix of the load is derived, which also uses the information of motion speed and acceleration of the end-effector. On the other hand, the analysis of the dynamic relationship between adjacent linkages and the joints is based on dual quaternion algebra, and the identification matrix for the dynamic parameters and the difference values of associated linkages are derived, as well. The combination procedure of the method is flexible in the application of dynamic parameters identification for a serial robot using a dual quaternion. Furthermore, the proposed DQ (dual quaternion)-based method in this paper has the advantage of lower cost compared with the RBFNN (radial basis function neural network)-based method. The effectiveness of the proposed dynamic parameter identification method for a serial robot has been verified by relevant experiments. Full article
Show Figures

Figure 1

14 pages, 4462 KiB  
Article
Precise Cruise Control for Fixed-Wing Aircraft Based on Proximal Policy Optimization with Nonlinear Attitude Constraints
by Haotian Wu, Yan Guo, Juliang Cao, Zhiming Xiong and Junda Chen
Aerospace 2025, 12(8), 670; https://doi.org/10.3390/aerospace12080670 - 27 Jul 2025
Viewed by 175
Abstract
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear [...] Read more.
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear attitude constraints. This method first introduces a combination of long short-term memory (LSTM) and a fully connected layer (FC) to form the policy network of the PPO method, improving the algorithm’s learning efficiency for sequential data while avoiding feature compression. Secondly, it transforms cruise control into tracking target heading, altitude, and speed, achieving a mapping from motion states to optimal control actions within the policy network, and designs nonlinear constraints as the maximum reward intervals for pitch and roll to mitigate abnormal attitudes during maneuvers. Finally, a JSBSim simulation platform is established to train the network parameters, obtaining the optimal strategy for cruise control and achieving precise end-to-end control of the aircraft. Experimental results show that, compared to the cruise control method without dynamic constraints, the improved method reduces heading deviation by approximately 1.6° during ascent and 4.4° during descent, provides smoother pitch control, decreases steady-state altitude error by more than 1.5 m, and achieves higher accuracy in overlapping with the target trajectory during hexagonal trajectory tracking. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 7095 KiB  
Article
Development of a Dual-Input Hybrid Wave–Current Ocean Energy System: Design, Fabrication, and Performance Evaluation
by Farooq Saeed, Tanvir M. Sayeed, Mohammed Abdul Hannan, Abdullah A. Baslamah, Aedh M. Alhassan, Turki K. Alarawi, Osama A. Alsaadi, Muhanad Y. Alharees and Sultan A. Alshehri
J. Mar. Sci. Eng. 2025, 13(8), 1435; https://doi.org/10.3390/jmse13081435 - 27 Jul 2025
Viewed by 349
Abstract
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations [...] Read more.
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations include a custom designed and built dual-rotor generator that accepts independent mechanical input from both subsystems without requiring complex mechanical coupling and a bi-directional mechanical motion rectifier with an overdrive. Numerical simulations using ANSYS AQWA (2024R2) and QBLADE(2.0.4) guided the design optimization of the buoy and turbine, respectively. Wave resource assessment for the Khobar coastline, Saudi Arabia, was conducted using both historical data and field measurements. The prototype was designed and built using readily available 3D-printed components, ensuring cost-effective construction. This mechanically simple system was tested in both laboratory and outdoor conditions. Results showed reliable operation and stable power generation under simultaneous wave and current input. The performance is comparable to that of existing hybrid ocean wave–current energy converters that employ more complex flywheel or dual degree-of-freedom systems. This work provides a validated pathway for low-cost, compact, and modular hybrid ocean energy systems suited for remote coastal applications or distributed marine sensing platforms. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

Back to TopTop