Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions
Abstract
:1. Introduction
2. Research and Production of Similar Materials
2.1. Experimental Materials
2.2. Orthogonal Test
2.3. Preparation Protocol
3. Characterisation of Physical and Mechanical Properties and Sensitivity Analysis
3.1. Characterisation of Mechanical Properties
3.2. Sensitivity Analysis
3.3. Multiple Linear Regression Analysis
4. Analysis of Water Properties Under Dry-Wet Cycles
4.1. Hydrological Characterisation
4.2. Multivariate Linear Regression Analysis of Hydraulic Properties
4.3. Water-Damage Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, M.; Xu, Q.; Yang, H.; Li, S.; Iqbal, J.; Fu, X.; Huang, X.; Cheng, W. Activity law and hydraulics mechanism of landslides with different sliding surface and permeability in the Three Gorges Reservoir Area, China. Eng. Geol. 2019, 260, 105212. [Google Scholar] [CrossRef]
- Huang, D.; Gu, D.M. Influence of filling-drawdown cycles of the Three Gorges reservoir on deformation and failure behaviors of anaclinal rock slopes in the Wu Gorge. Geomorphology 2017, 295, 489–506. [Google Scholar] [CrossRef]
- Yi, X.; Feng, W.; Wu, M.; Ye, Z.; Fang, Y.; Wang, P.; Li, R.; Dun, J. The initial impoundment of the Baihetan reservoir region (China) exacerbated the deformation of the Wangjiashan landslide: Characteristics and mechanism. Landslides 2022, 19, 1897–1912. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, D.; Zhang, S. Shallow slope stability evolution during rainwater infiltration considering soil cracking state. Comput. Geotech. 2020, 117, 103285. [Google Scholar] [CrossRef]
- Nian, G.Q.; Chen, Z.H.; Bao, M.; Zhang, L.; Zhu, T. Rainfall infiltration and three-dimensional stability analyses of fractured rock slopes considering preferential flow. Nat. Hazards 2023, 118, 2629–2656. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yin, Y.P.; Yan, H.; Li, H.; Dai, Z.; Zhang, N. Reactivation characteristics and hydrological inducing factors of a massive ancient landslide in the three Gorges Reservoir, China. Eng. Geol. 2021, 292, 102673. [Google Scholar] [CrossRef]
- Song, C.P.; You, S.; Ji, H.G.; Sun, L. Orthogonal testing of compressive strength of similar materials and influence coefficient of material strength. Mater. Rep. 2023, 37, 64–69. (In Chinese) [Google Scholar]
- Zhao, J.H.; Chen, J.T.; Zhang, X.G.; Ning, J.; Zhang, Y.Z. Distribution characteristics of floor pore water pressure based on similarity simulation experiments. Bull. Eng. Geol. Environ. 2020, 79, 4805–4816. [Google Scholar] [CrossRef]
- Liu, X.S.; Song, S.L.; Tan, Y.L.; Fan, D.Y.; Ning, J.G.; Li, X.B.; Yin, Y.C. Similar simulation study on the deformation and failure of surrounding rock of a large section chamber group under dynamic loading. Int. J. Min. Sci. Technol. 2021, 31, 495–505. [Google Scholar] [CrossRef]
- Cheng, B.W.; Huang, J.H.; Liu, T.T.; Wang, N.; Li, X. Research and application of coral reef limestone similar material development and model testing. J. Build. Eng. 2023, 80, 107940. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, X.H.; Zhang, B.L. Orthogonal Experimental Study on the Construction of a Similar Material Proportional Model for Simulated Coal Seam Sampling. Processes 2023, 11, 2125. [Google Scholar] [CrossRef]
- Luo, Y.; Tao, Y.H.; Zhang, M.C.; Gong, H.; Li, X. Experimental study on mix proportions of similar materials to reef limestone. Constr. Build. Mater. 2023, 365, 130111. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.-X.; Xu, J.-S. Study on Proportioning Scheme of Coal System Rocky Similar Material Based on Orthogonal Test. Materials 2023, 16, 7113. [Google Scholar] [CrossRef]
- Yang, X.L.; Dong, J.Y.; Yang, J.H.; Han, X. Similar Material Proportioning Tests and Mechanical Properties Based on Orthogonal Design. Materials 2023, 16, 6439. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.L.; Zhou, Y.J.; Xu, X.D. Research on the ratio of similar materials in water-absorbent mudstone based on fuzzy mathematics. Sci. Rep. 2024, 14, 4289. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.P.; Zhang, J.W.; Xin, C.L.; Song, D.; Hu, N.; Li, B. Proportioning Test on the Similar Materials of the Rock Mass Physical Model Test Considering Seepage and Dynamic Characteristics. J. Mar. Sci. Eng. 2023, 11, 1815. [Google Scholar] [CrossRef]
- Li, B.P.; Cheng, Y.H.; Li, F.H. Development and Constitutive Model of Fluid–Solid Coupling Similar Materials. Sustainability 2023, 15, 3379. [Google Scholar] [CrossRef]
- Wu, W.L.; Guo, J.Q.; Liu, X.L.; Zhu, Z.; Wang, E. Experimental Study on Similar Materials for Fluid–Solid Coupling for Model Test of Water Inrush in Karst Tunnel. Geotech. Geol. Eng. 2023, 41, 4119–4135. [Google Scholar] [CrossRef]
- Zan, W.B.; Lai, J.X.; Zhang, W.J.; Yang, Q.; Qin, Y.; Su, X. Experimental and applied research on similar materials to granular mixtures for solid-liquid coupling model test of an underwater tunnel. Constr. Build. Mater. 2024, 416, 135170. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, C.; Xue, L.; Dong, J.; Jiang, T. Experimental study on the reasonable proportions of rock-like materials for water-induced strength degradation in rock slope model test. Sci. Rep. 2023, 13, 9288. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, W.T. Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. Processes 2018, 6, 211. [Google Scholar] [CrossRef]
- Zhao, W.S.; Guo, H.; Chen, W.Z.; Liu, J.; Peng, W.; Zhou, S. Experimental study on similar materials for tunnel lining concrete in geomechanical model tests. Eng. Fail. Anal. 2023, 152, 107456. [Google Scholar] [CrossRef]
- Xu, Z.L.; Luo, Y.B.; Chen, J.X.; Su, Z.; Zhu, T.; Yuan, J. Mechanical properties and reasonable proportioning of similar materials in physical model test of tunnel lining cracking. Constr. Build. Mater. 2021, 300, 123960. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Zhang, J.T.; Zhang, Y.L. Similar simulation experiment of expressway tunnel in karst area. Constr. Build. Mater. 2018, 176, 1–13. [Google Scholar] [CrossRef]
- Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Vasiliadis, L.K. Structural Damage Prediction of a Reinforced Concrete Frame under Single and Multiple Seismic Events Using Machine Learning Algorithms. Appl. Sci. 2022, 12, 3845. [Google Scholar] [CrossRef]
- Alice, W.; Adel, A.; Olivier, C. Impact of wetting and drying cycles on the mechanical behaviour of a cement-treated soil. Transp. Geotech. 2022, 36, 100804. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, F.L.; Tan, B.; Hao, Y.; Zhang, M.; Li, H.; Yang, X.; Mo, Y.; Hu, T.; Li, S.; et al. Determination of optimal blending proportions for similar materials of uranium-bearing quasi-granite using orthogonal design. J. Radioanal. Nucl. Chem. 2023, 332, 539–551. [Google Scholar] [CrossRef]
- Yang, Y.M.; Yue, H.; Zhao, Y.Q.; Zhang, S.; Zhang, J.; Wang, Z.; Yang, W. Experimental Study on Ratio Optimization of Similar Materials for Underground Mining of Shendong Coalfield: A Case Study of Shangwan Coal Mine. Processes 2023, 11, 1352. [Google Scholar] [CrossRef]
- Yang, M.Z.; Yang, Y.; Zhao, B. Study on the Proportion of Conglomerate Similar Materials Based on the Orthogonal Test. Shock Vib. 2021, 2021, 6657323. [Google Scholar] [CrossRef]
- Wen, C.X.; Jia, S.P.; Fu, X.F.; Meng, L.; Zhao, Z. Experimental Research and Sensitivity Analysis of Mudstone Similar Materials Based on Orthogonal Design. Adv. Mater. Sci. Eng. 2020, 2020, 2031276. [Google Scholar] [CrossRef]
- Jiao, P.F.; Zhang, X.; LI, X.Z.; Liu, B.; Zhang, H. Experimental Study on the Ratio of Similar Materials in Weak Surrounding Rock Based on Orthogonal Design. J. Eng. 2018, 2018, 2591758. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
Groups. | Factor | Program Number | ||
---|---|---|---|---|
A | B | C | ||
1 | 1:5 | 3:10 | 4:10 | |
2 | 1:5 | 4:10 | 5:10 | |
3 | 1:5 | 5:10 | 6:10 | |
4 | 1:5 | 6:10 | 7:10 | |
5 | 1:5 | 7:10 | 3:10 | |
6 | 1:6 | 3:10 | 5:10 | |
7 | 1:6 | 4:10 | 6:10 | |
8 | 1:6 | 5:10 | 7:10 | |
9 | 1:6 | 6:10 | 3:10 | |
10 | 1:6 | 7:10 | 4:10 | |
11 | 1:7 | 3:10 | 6:10 | |
12 | 1:7 | 4:10 | 7:10 | |
13 | 1:7 | 5:10 | 3:10 | |
14 | 1:7 | 6:10 | 4:10 | |
15 | 1:7 | 7:10 | 5:10 | |
16 | 1:8 | 3:10 | 7:10 | |
17 | 1:8 | 4:10 | 3:10 | |
18 | 1:8 | 5:10 | 4:10 | |
19 | 1:8 | 6:10 | 5:10 | |
20 | 1:8 | 7:10 | 6:10 | |
21 | 1:9 | 3:10 | 3:10 | |
22 | 1:9 | 4:10 | 4:10 | |
23 | 1:9 | 5:10 | 5:10 | |
24 | 1:9 | 6:10 | 6:10 | |
25 | 1:9 | 7:10 | 7:10 |
Groups | Densities/() | Uniaxial Compressive Strength /MPa | Elastic Modulus/GPa | Cohesive Forces /kPa | Internal Friction/° | Hydraulic Conductivity/(cm/s) |
---|---|---|---|---|---|---|
1 | 2.395 | 6.889 | 713.67 | 1.3 | 48.13 | 8.89 × 10−4 |
2 | 2.410 | 5.058 | 1876.11 | 1.1 | 47.24 | 1.41 × 10−3 |
3 | 2.369 | 6.920 | 858.89 | 1.4 | 49.96 | 8.80 × 10−4 |
4 | 2.427 | 8.475 | 1965.00 | 1.2 | 53.43 | 4.36 × 10−4 |
5 | 2.227 | 7.715 | 1869.17 | 1.5 | 41.05 | 6.53 × 10−4 |
6 | 2.342 | 7.237 | 1028.33 | 1.3 | 52.94 | 7.89 × 10−4 |
7 | 2.278 | 6.028 | 785.33 | 0.9 | 54.12 | 1.13 × 10−3 |
8 | 2.520 | 8.194 | 657.33 | 1.2 | 56.43 | 5.16 × 10−4 |
9 | 2.286 | 5.141 | 650.67 | 1.0 | 49.03 | 1.39 × 10−3 |
10 | 2.367 | 7.460 | 1809.17 | 1.5 | 49.21 | 7.26 × 10−4 |
11 | 2.362 | 7.704 | 817.67 | 1.4 | 50.81 | 6.56 × 10−4 |
12 | 2.414 | 7.409 | 708.00 | 1.5 | 48.57 | 7.40 × 10−4 |
13 | 2.267 | 5.162 | 994.50 | 0.9 | 49.16 | 1.38 × 10−3 |
14 | 2.108 | 5.799 | 1111.00 | 1.4 | 37.65 | 1.20 × 10−3 |
15 | 2.205 | 5.901 | 1317.00 | 1.2 | 49.10 | 1.17 × 10−3 |
16 | 2.324 | 6.410 | 1090.00 | 1.4 | 46.99 | 1.03 × 10−3 |
17 | 2.218 | 4.423 | 824.00 | 1.0 | 44.76 | 1.59 × 10−3 |
18 | 2.175 | 3.669 | 910.00 | 0.9 | 42.47 | 1.81 × 10−3 |
19 | 2.317 | 5.687 | 1484.00 | 1.2 | 47.23 | 1.23 × 10−3 |
20 | 2.361 | 6.492 | 985.33 | 1.4 | 46.64 | 1.00 × 10−3 |
21 | 2.276 | 4.664 | 531.33 | 1.0 | 47.05 | 1.52 × 10−3 |
22 | 2.247 | 4.092 | 612.00 | 0.9 | 46.72 | 1.69 × 10−3 |
23 | 2.274 | 4.795 | 583.00 | 1.1 | 45.37 | 1.49 × 10−3 |
24 | 2.325 | 7.118 | 842.50 | 1.5 | 46.59 | 8.23 × 10−4 |
25 | 2.326 | 6.446 | 747.00 | 1.3 | 48.10 | 1.02 ×10−3 |
Mechanical Parameters | Source of Variance | Factor A | Factor B | Factor C | Error | Total |
---|---|---|---|---|---|---|
Density | Sum of squares | 0.0414836 | 0.00724 | 0.075062 | 0.0251932 | 0.194696 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 0.010371 | 0.00181 | 0.018766 | 0.002099 | — | |
F-value | 4.939857 | 0.862137 | 8.938364 | — | — | |
Uniaxial compressive strength | Sum of squares | 12.10359 | 7.044601 | 15.1935 | 1.713215 | 42.24549 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 3.025898 | 1.76115 | 3.798374 | 0.142768 | — | |
F-value | 21.19453 | 12.33576 | 26.60524 | — | — | |
Elastic modulus | Sum of squares | 1,604,482 | 1,135,262 | 422,991.7 | 583,450.3 | 1,604,482 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 401,120.6 | 283,815.5 | 105,747.9 | 48,620.85 | — | |
F-value | 8.24997 | 5.837321 | 2.17495 | — | — | |
Cohesive forces | Sum of squares | 0.084 | 0.324 | 0.208 | 0.204 | 1.08 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 0.021 | 0.081 | 0.052 | 0.017 | — | |
F-value | 1.235294 | 4.764706 | 3.058824 | — | — | |
Internal friction | Sum of squares | 134.8035 | 23.9738 | 116.4643 | 63.99824 | 391.505 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 33.70088 | 5.99345 | 29.11608 | 5.333187 | — | |
F-value | 6.319089 | 1.123803 | 5.459415 | — | — | |
Hydraulic conductivity | Sum of squares | 9.88 × 10−7 | 5.75 × 10−7 | 1.24 × 10−6 | 1.4 × 10−7 | 3.45 × 10−6 |
Degrees of freedom | 4 | 4 | 4 | 12 | 24 | |
Mean square sum | 2.47 × 10−7 | 1.44 × 10−7 | 3.1 × 10−7 | 1.17 × 10−8 | — | |
F-value | 21.19453 | 12.33576 | 26.60524 | — | — |
Number of Wet–Dry Cycles | Multiple Linear Regression Fit Function | R2 | p |
---|---|---|---|
0 | 0.743150 | 0.000630 | |
1 | 0.769298 | 0.000783 | |
2 | 0.769312 | 0.000842 | |
3 | 0.792834 | 0.000698 |
Materials | Notation | Water-Damage Resistance Coefficient |
---|---|---|
Quartz sand | 0.920 | |
Barite | 0.849 | |
cement | 2.245 | |
Gypsum | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Xu, X.; Wang, L. Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions. Buildings 2025, 15, 1794. https://doi.org/10.3390/buildings15111794
Song C, Xu X, Wang L. Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions. Buildings. 2025; 15(11):1794. https://doi.org/10.3390/buildings15111794
Chicago/Turabian StyleSong, Chunpeng, Xiaoliang Xu, and Lehua Wang. 2025. "Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions" Buildings 15, no. 11: 1794. https://doi.org/10.3390/buildings15111794
APA StyleSong, C., Xu, X., & Wang, L. (2025). Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions. Buildings, 15(11), 1794. https://doi.org/10.3390/buildings15111794