Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- As-built Scalmalloy® shows a bimodal microstructure composed of fine equiaxed and coarse columnar grains arranged in a layered melt pool architecture. After DA at 325 °C/4 h, clear grain coarsening occurs. EBSD analysis confirmed an increase in mean grain size from ~1.8 µm to ~3.3 µm, accompanied by a reduction in grain aspect ratio Fine grains coarsen by ~30% after DA, while coarse grains remain essentially unchanged.
- Aging reduced the overall crystallographic texture, with columnar grains adopting more random orientations, and increased the fraction of grains with misorientation angles below 35°, indicating lower internal strain and a more uniform grain orientation.
- No significant differences were observed between top and bottom regions or between xy- and xz-planes for hardness, conductivity, porosity, or grain structure, confirming the high isotropy of LPBF-manufactured Scalmalloy®.
- Both as-built and DA conditions exhibited very high relative densities (>99.7%) with isotropic pore distributions. No large lack-of-fusion or gas pores detected, meaning porosity is not expected to limit mechanical performance.
- Vickers microhardness mapping showed higher values at fine-grained melt pool edges compared to coarse-grained centers. After DA, this gap decreased due to grain homogenization. Overall hardness increased from (104 ± 7) HV0.025 in the as-built condition to (170 ± 10) HV0.025 after DA, mainly due to precipitation of Al3(Sc,Zr) particles.
- Aging at 325 °C led to rapid peak-aging within 2 h, with hardness stability maintained up to 256 h, demonstrating excellent thermal stability of the strengthening precipitates. At 275 °C, slower precipitation kinetics were observed, while 400 °C caused rapid hardening followed by overaging likely due to precipitate coarsening and grain growth. Electrical conductivity increased continuously with temperature and exposure time, reflecting solute depletion and precipitate evolution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leary, M. Design for Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128167212. [Google Scholar]
- Suzuki, A.; Miyasaka, T.; Takata, N.; Kobashi, M.; Kato, M. Control of Microstructural Characteristics and Mechanical Properties of AlSi12 Alloy by Processing Conditions of Laser Powder Bed Fusion. Addit. Manuf. 2021, 48, 102383. [Google Scholar] [CrossRef]
- Gheysen, J.; Marteleur, M.; van der Rest, C.; Simar, A. Efficient Optimization Methodology for Laser Powder Bed Fusion Parameters to Manufacture Dense and Mechanically Sound Parts Validated on AlSi12 Alloy. Mater. Des. 2021, 199, 109433. [Google Scholar] [CrossRef]
- Casati, R.; Coduri, M.; Checchia, S.; Vedani, M. Insight into the Effect of Different Thermal Treatment Routes on the Microstructure of AlSi7Mg Produced by Laser Powder Bed Fusion. Mater. Charact. 2021, 172, 110881. [Google Scholar] [CrossRef]
- Di Egidio, G.; Ceschini, L.; Morri, A.; Martini, C.; Merlin, M. A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments. Metall. Mater. Trans. B 2022, 53, 284–303. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E. Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures. Materials 2023, 16, 7639. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, X.J.; Saunders, M.; Suvorova, A.; Zhang, L.C.; Liu, Y.J.; Fang, M.H.; Huang, Z.H.; Sercombe, T.B. A Selective Laser Melting and Solution Heat Treatment Refined Al–12Si Alloy with a Controllable Ultrafine Eutectic Microstructure and 25% Tensile Ductility. Acta Mater. 2015, 95, 74–82. [Google Scholar] [CrossRef]
- Maeshima, T.; Oh-ishi, K.; Kadoura, H. Microstructural Evolution and Hardening Phenomenon Caused by Aging of AlSi10Mg Alloy by Laser Powder Bed Fusion. Heliyon 2024, 10, e28006. [Google Scholar] [CrossRef]
- Røyset, J.; Ryum, N. Scandium in Aluminium Alloys. Int. Mater. Rev. 2005, 50, 19–44. [Google Scholar] [CrossRef]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Y.A.; Yelagin, V.I. Scientific Principles of Making an Alloying Addition of Scandium to Aluminium Alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Cerri, E.; Curti, L.; Ghio, E. Main Heat Treatments Currently Applied on Laser Powder Bed-Fused Scalmalloy®: A Review. Crystals 2024, 15, 25. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Liu, Y.; Ren, X. A Systematic Study of Interface Properties for L12-Al3Sc/Al Based on the First-Principles Calculation. Results Phys. 2020, 19, 103378. [Google Scholar] [CrossRef]
- Yan, K.; Chen, Z.; Lu, W.; Zhao, Y.; Le, W.; Naseem, S. Nucleation and Growth of Al3Sc Precipitates during Isothermal Aging of Al-0.55 Wt% Sc Alloy. Mater. Charact. 2021, 179, 111331. [Google Scholar] [CrossRef]
- Mohebbi, M.S.; Nagy, S.; Hájovská, Z.; Nosko, M.; Ploshikhin, V. Understanding Precipitation during In-Situ and Post-Heat Treatments of Al-Mg-Sc-Zr Alloys Processed by Powder-Bed Fusion. Addit. Manuf. 2024, 90, 104315. [Google Scholar] [CrossRef]
- Davydov, V.G.; Elagin, V.I.; Zakharov, V.V.; Rostoval, D. Alloying Aluminum Alloys with Scandium and Zirconium Additives. Met. Sci. Heat Treat. 1996, 38, 347–352. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N. Coarsening Kinetics of Nanoscale Al3Sc Precipitates in an Al–Mg–Sc Alloy. Acta Mater. 2005, 53, 4259–4268. [Google Scholar] [CrossRef]
- Fuller, C.B.; Seidman, D.N.; Dunand, D.C. Mechanical Properties of Al(Sc,Zr) Alloys at Ambient and Elevated Temperatures. Acta Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Martucci, A.; Aversa, A.; Manfredi, D.; Bondioli, F.; Biamino, S.; Ugues, D.; Lombardi, M.; Fino, P. Low-Power Laser Powder Bed Fusion Processing of Scalmalloy®. Materials 2022, 15, 3123. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Dumitraschkewitz, P.; Pogatscher, S.; Wegener, K. Microstructure Characterization of SLM-Processed Al-Mg-Sc-Zr Alloy in the Heat Treated and HIPed Condition. Addit. Manuf. 2018, 20, 173–181. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Zhu, H.; Wang, M.; Chen, C.; Yuan, T. Effect of Aging Treatment on the Microstructure and Mechanical Properties of Al-3.02Mg-0.2Sc-0.1Zr Alloy Printed by Selective Laser Melting. Mater. Des. 2019, 168, 107668. [Google Scholar] [CrossRef]
- Bayoumy, D.; Kan, W.; Wu, X.; Zhu, Y.; Huang, A. The Latest Development of Sc-Strengthened Aluminum Alloys by Laser Powder Bed Fusion. J. Mater. Sci. Technol. 2023, 149, 1–17. [Google Scholar] [CrossRef]
- Yang, K.V.; Shi, Y.; Palm, F.; Wu, X.; Rometsch, P. Columnar to Equiaxed Transition in Al-Mg(-Sc)-Zr Alloys Produced by Selective Laser Melting. Scr. Mater. 2018, 145, 113–117. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D. Parametric Analysis of Thermal Behavior during Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Shi, Y.; Rometsch, P.; Yang, K.; Palm, F.; Wu, X. Characterisation of a Novel Sc and Zr Modified Al–Mg Alloy Fabricated by Selective Laser Melting. Mater. Lett. 2017, 196, 347–350. [Google Scholar] [CrossRef]
- Churyumov, A.Y.; Pozdniakov, A.V.; Prosviryakov, A.S.; Loginova, I.S.; Daubarayte, D.K.; Ryabov, D.K.; Korolev, V.A.; Solonin, A.N.; Pavlov, M.D.; Valchuk, S. V Microstructure and Mechanical Properties of a Novel Selective Laser Melted Al–Mg Alloy with Low Sc Content. Mater. Res. Express 2019, 6, 126595. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Kern, K.; Palm, F.; Wegener, K. SLM-Processed Sc- and Zr- Modified Al-Mg Alloy: Mechanical Properties and Microstructural Effects of Heat Treatment. Mater. Sci. Eng. A 2017, 701, 264–273. [Google Scholar] [CrossRef]
- Røyset, J.; Ryum, N. Kinetics and Mechanisms of Precipitation in an Al–0.2wt.% Sc Alloy. Mater. Sci. Eng. A 2005, 396, 409–422. [Google Scholar] [CrossRef]
- Shen, X.F.; Cheng, Z.Y.; Wang, C.G.; Wu, H.F.; Yang, Q.; Wang, G.W.; Huang, S.K. Effect of Heat Treatments on the Microstructure and Mechanical Properties of Al-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting. Opt. Laser Technol. 2021, 143, 107312. [Google Scholar] [CrossRef]
- ASTM E1004; Standard Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method. ASTM International: West Conshohocken, PA, USA, 2023.
- UNI EN ISO 6507-1:2018; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Nudelis, N.; Mayr, P. A Novel Classification Method for Pores in Laser Powder Bed Fusion. Metals 2021, 11, 1912. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Liu, Y.; Zhang, L. Understanding Melt Pool Characteristics in Laser Powder Bed Fusion: An Overview of Single- and Multi-Track Melt Pools for Process Optimization. Adv. Powder Mater. 2023, 2, 100137. [Google Scholar] [CrossRef]
- Martelli, P.A.; Sivo, A.; Calignano, F.; Bassini, E.; Biamino, S.; Ugues, D. Parameters Optimization and Repeatability Study on Low-Weldable Nickel-Based Superalloy René 80 Processed via Laser Powder–Bed Fusion (L-PBF). Metals 2023, 13, 210. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E.; Bolelli, G. Defect-Correlated Vickers Microhardness of Al-Si-Mg Alloy Manufactured by Laser Powder Bed Fusion with Post-Process Heat Treatments. J. Mater. Eng. Perform. 2022, 31, 8047–8067. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E. Metallurgical Analysis of Laser Powder Bed-Fused Al–Si–Mg Alloys: Main Causes of Premature Failure. Mater. Sci. Eng. A 2023, 881, 145402. [Google Scholar] [CrossRef]
- Shakil, S.I.; González-Rovira, L.; Cabrera-Correa, L.; de Dios López-Castro, J.; Castillo-Rodríguez, M.; Botana, F.J.; Haghshenas, M. Insights into Laser Powder Bed Fused Scalmalloy®: Investigating the Correlation between Micromechanical and Macroscale Properties. J. Mater. Res. Technol. 2023, 25, 4409–4424. [Google Scholar] [CrossRef]
- Schimbäck, D.; Kaserer, L.; Mair, P.; Palm, F.; Leichtfried, G.; Pogatscher, S.; Hohenwarter, A. Deformation and Fatigue Behaviour of Additively Manufactured Scalmalloy® with Bimodal Microstructure. Int. J. Fatigue 2023, 172, 107592. [Google Scholar] [CrossRef]
- Janus, K.; Jarzębska, A.; Wójcik, A.; Garbacz-Klempka, A.; Piekło, J.; Terlicka, S.; Piękoś, M.; Sobczak, J.J.; Krasa, O.; Krawczyk, Ł. Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting in Term of Long-Term Applications. Arch. Civ. Mech. Eng. 2025, 25, 183. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, D.; Yang, J.; Dai, D.; Zhao, T.; Hong, C.; Gasser, A.; Poprawe, R. Selective Laser Melting of Rare Earth Element Sc Modified Aluminum Alloy: Thermodynamics of Precipitation Behavior and Its Influence on Mechanical Properties. Addit. Manuf. 2018, 23, 1–12. [Google Scholar] [CrossRef]
- González-Rovira, L.; Cabrera-Correa, L.; de Dios López-Castro, J.; Ojeda-López, A.; Botana, F.J. AlMgScZr Alloys for Laser Powder Bed Fusion Additive Manufacturing. A Review. Mater. Des. 2025, 254, 114080. [Google Scholar] [CrossRef]
- Mehta, B.; Svanberg, A.; Nyborg, L. Laser Powder Bed Fusion of an Al-Mg-Sc-Zr Alloy: Manufacturing, Peak Hardening Response and Thermal Stability at Peak Hardness. Metals 2021, 12, 57. [Google Scholar] [CrossRef]
- Taendl, J.; Orthacker, A.; Amenitsch, H.; Kothleitner, G.; Poletti, C. Influence of the Degree of Scandium Supersaturation on the Precipitation Kinetics of Rapidly Solidified Al-Mg-Sc-Zr Alloys. Acta Mater. 2016, 117, 43–50. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N. Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys. Acta Mater. 2001, 49, 1909–1919. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E. AlSi10Mg Alloy Produced by Selective Laser Melting: Relationships between Vickers Microhardness, Rockwell Hardness and Mechanical Properties. Metall. Ital. 2020, 112, 5–17. [Google Scholar]
- Puybras, M.; Massardier, V.; Fabregue, D.; Perez, M.; Dorin, T. Influence of Sc and Zr on Mg Precipitation and Sensitization Resistance in Al-Mg-(Sc-Zr) Alloys. J. Alloys Compd. 2025, 1021, 179555. [Google Scholar] [CrossRef]
- Taendl, J.; Poletti, C. Influence of Al3(Sc,Zr) Precipitates on Deformability and Friction Stir Welding Behavior of Al-Mg-Sc-Zr Alloys. BHM Berg-Und Hüttenmänn. Monatshefte 2016, 161, 330–333. [Google Scholar] [CrossRef]












| Elements | Al | Mg | Sc | Zr | Mn | Fe | Si |
|---|---|---|---|---|---|---|---|
| wt. % | Bal. | 4.7 | 0.76 | 0.3 | 0.5 | <0.2 | <0.2 |
| Samples | Mean Diameter [µm] on XZ Plane and Density (%) | Mean Diameter [µm] on XY Plane and Density (%) | ||
|---|---|---|---|---|
| Top | Bottom | Top | Bottom | |
| AB | 2.5 ± 1.3 (99.93) | 2.4 ± 1.6 (99.90) | 2.7 ± 1.3 (99.66) | 2.8 ± 1.4 (99.81) |
| DA at 325-4 h | 3.4 ± 2.3 (99.82) | 2.6 ± 1.6 (99.82) | 3.7 ± 2.3 (99.75) | 3.1 ± 2.2 (99.84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghio, E.; Curti, L.; Carosi, D.; Morri, A.; Cerri, E. Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity. Metals 2025, 15, 1364. https://doi.org/10.3390/met15121364
Ghio E, Curti L, Carosi D, Morri A, Cerri E. Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity. Metals. 2025; 15(12):1364. https://doi.org/10.3390/met15121364
Chicago/Turabian StyleGhio, Emanuele, Lorenzo Curti, Daniele Carosi, Alessandro Morri, and Emanuela Cerri. 2025. "Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity" Metals 15, no. 12: 1364. https://doi.org/10.3390/met15121364
APA StyleGhio, E., Curti, L., Carosi, D., Morri, A., & Cerri, E. (2025). Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity. Metals, 15(12), 1364. https://doi.org/10.3390/met15121364

