Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Irradiation
2.3. Life Table Study
2.4. Life Table Data Analysis
2.5. RNA Extraction and Transcriptome Sequencing
2.6. Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Development Time, Survival, and Oviposition Period
3.2. Life Table Parameters
3.3. RNA Quality Control Data Statistics
3.4. Transcriptome Sequencing Analysis
3.5. GO Enrichment Analysis
3.6. KEGG Pathway Analysis
3.7. Identification and Screening of Differentially Expressed Genes (DEGs) Associated with Sterility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Catalán Ruescas, D.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Biondi, A.; Guedes, R.N.C.; Wan, F.-H.; Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef]
- Campos, M.R.; Biondi, A.; Adiga, A.; Guedes, R.N.C.; Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Han, P.; Desneux, N.; Becker, C.; Larbat, R.; Le Bot, J.; Adamowicz, S.; Zhang, J.; Lavoir, A.-V. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: Implications for integrated pest management. J. Pest Sci. 2019, 92, 1359–1370. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; He, T.; Li, P.; Liu, Y.; Zhou, S.; Wu, Q.; Chen, T.; Lu, Y.; Hou, Y. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics 2021, 113, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Güncan, A.; Gul, H.; Hafeez, M.; Zhou, S.; Wang, Y.; Zhang, Z.; Huang, J.; Ghramh, H.A.; Guo, W.; et al. Spinosad-induced intergenerational sublethal effects on Tuta absoluta: Biological traits and related gene expressions. Entomol. Gen. 2024, 44, 395–404. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Ullah, F.; Güncan, A.; Abbas, A.; Gul, H.; Guedes, R.N.C.; Zhang, Z.; Huang, J.; Khan, K.A.; Ghramh, H.A.; Chavarín-Gómez, L.E.; et al. Sublethal effects of neonicotinoids on insect pests. Entomol. Gen. 2024, 44, 1145–1160. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Chen, L.; Jinchao, W.; Zhang, Z.; Huang, J.; Li, X.; Lu, Y. Cyantraniliprole resistance in Tuta absoluta: Selection, comparative transcriptomes, and nanocarrier-mediated RNAi studies. Entomol. Gen. 2025, 45, 565–575. [Google Scholar] [CrossRef]
- Ullah, F.; Guru-Pirasanna-Pandi, G.; Murtaza, G.; Sarangi, S.; Gul, H.; Li, X.; Chavarín-Gómez, L.E.; Ramírez-Romero, R.; Guedes, R.N.C.; Desneux, N.; et al. Evolving strategies in agroecosystem pest control: Transitioning from chemical to green management. J. Pest Sci. 2025. [Google Scholar] [CrossRef]
- Marec, F.; Vreysen, M.J.B. Advances and challenges of using the sterile insect technique for the management of pest Lepidoptera. Insects 2019, 10, 371. [Google Scholar] [CrossRef]
- Alphey, L.; Benedict, M.; Bellini, R.; Clark, G.G.; Dame, D.A.; Service, M.W.; Dobson, S.L. Sterile-insect methods for control of mosquito-borne diseases: An analysis. Vector Borne Zoonotic Dis. 2010, 10, 295–311. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K.; et al. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Cagnotti, C.L.; Viscarret, M.M.; Riquelme, M.B.; Botto, E.N.; Carabajal, L.Z.; Segura, D.F.; López, S.N. Effects of X-rays on Tuta absoluta for use in inherited sterility programmes. J. Pest Sci. 2012, 85, 413–421. [Google Scholar] [CrossRef]
- Candás, L.; Cagnotti, C.L.; López, S.N. Integration of inherited sterility and inoculative releases of a miridae predator for the control of the tomato leaf miner, Tuta absoluta. BioControl 2024, 69, 29–37. [Google Scholar] [CrossRef]
- Zhou, S.; Li, X.; Zhang, J.; Liu, C.; Huang, J.; Zhang, Z.; Ren, X.; Chen, L.; Hafeez, M.; Han, P.; et al. Screening the optimal dose of gamma radiation for Tuta absoluta sterility: Paving the way for sterile insect technique programs. Entomol. Gen. 2024, 44, 415–422. [Google Scholar] [CrossRef]
- Chi, H.; You, M.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.-J.; Fu, J.-W.; Xu, Y.-Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Huang, H.-W.; Chi, H.; Smith, C.L. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): With a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 2018, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Genç, H. The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Pupal key characters for sexing individuals. Turk. J. Zool. 2016, 40, 801–805. [Google Scholar] [CrossRef]
- Chi, H.; Güncan, A.; Kavousi, A.; Gharakhani, G.; Atlihan, R.; Salih Özgökçe, M.; Shirazi, J.; Amir-Maafi, M.; Maroufpoor, M.; Roya, T. TWOSEX-MSChart: The key tool for life table research and education. Entomol. Gen. 2022, 42, 845–849. [Google Scholar] [CrossRef]
- Akkopru, E.P.; Atlıhan, R.; Okut, H.; Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef]
- Bradley, E.; Tibshirani, R.J. Introduction to the Bootstrap, 1st ed.; CRC Press: New York, NY, USA, 1994; p. 456. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Xu, L.; Li, C.; Li, Q.; Dewer, Y.; Wu, K. Effects of X-ray irradiation on biological parameters and induced sterility of Ephestia elutella: Establishing the optimum irradiation dose and stage. Front. Physiol. 2022, 13, 895882. [Google Scholar] [CrossRef]
- Hao, Z.; Jin, T.; Yang, S.Y.; Lin, Y.Y.; Zhong, H.; Peng, Z.Q.; Ma, G.C. Exploring the hormetic effects of radiation on the life table parameters of Spodoptera frugiperda. Pest Manag. Sci. 2024, 80, 1533–1546. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Wen, J.; Zeng, Y.; Deng, Y.; Hu, Q.; Weng, Q. Molecular mechanism of male sterility induced by 60Co γ-rays on Plutella xylostella (Linnaeus). Molecules 2023, 28, 5727. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Hossain, M.A.; Athanassiou, C.G. Improved quality management of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) for enhanced efficacy of the sterile insect technique. Insects 2023, 14, 344. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, G.; Hahn, D.A. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J. Exp. Biol. 2012, 215, 2150–2161. [Google Scholar] [CrossRef]
- Ayvaz, A.; Albayrak, S.; Karaborklu, S. Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag. Sci. 2008, 64, 505–512. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Deng, Y.; He, R.; Zhang, X.; Zhong, G.; Hu, Q.; Weng, Q. Effects of 60Co-γ radiation on testis physiological aspects of Plutella xylostella (Linnaeus). Ecotoxicol. Environ. Saf. 2019, 169, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Rezapoor, S.; Shabeeb, D.; Musa, A.E.; Najafi, M.; et al. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. Clin. Transl. Oncol. 2018, 20, 975–988. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, J.; Zhang, G.; Singh, D.; Zhang, X.; Liang, Z. Mamestra brassicae multiple nucleopolyhedroviruses prevents pupation of Helicoverpa armigera by regulating juvenile hormone titer. Insects 2024, 15, 202. [Google Scholar] [CrossRef]
- Vengatharajuloo, V.; Goh, H.-H.; Hassan, M.; Govender, N.; Sulaiman, S.; Afiqah-Aleng, N.; Harun, S.; Mohamed-Hussein, Z.-A. Gene co-expression network analysis reveals key regulatory genes in Metisa plana hormone pathways. Insects 2023, 14, 503. [Google Scholar] [CrossRef]
- Traut, W.; Sahara, K.; Marec, F. Sex chromosomes and sex determination in Lepidoptera. Sex. Dev. 2007, 1, 332–346. [Google Scholar] [CrossRef]
- Marec, F.; Kollárová, I.; Pavelka, J. Radiation-induced inherited sterility combined with a genetic sexing system in Ephestia kuehniella (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 1999, 92, 250–259. [Google Scholar] [CrossRef]
- Toyofuku, M.; Fujinaga, D.; Inaba, K.; Funahashi, T.; Fujikawa, Y.; Inoue, H.; Kataoka, H.; Niwa, R.; Ono, H. The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster. J. Insect Physiol. 2021, 134, 104294. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, M.; Killiny, N. In silico characterization and gene expression analysis of toll signaling pathway-related genes in Diaphorina citri. Insects 2022, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Rice, A.; Li, T.; Wang, J.; Yang, X.; Yuan, H.; Graham, R.I.; Wilson, K. Partiti-like viruses from African armyworm increase larval and pupal mortality of a novel host: The Egyptian cotton leafworm. Pest Manag. Sci. 2022, 78, 1529–1537. [Google Scholar] [CrossRef]
- Leyria, J.; Fruttero, L.L.; Paglione, P.A.; Canavoso, L.E. How insects balance reproductive output and immune investment. Insects 2025, 16, 311. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Niu, R.; Gao, X.; Luo, J.; Cui, J.; Wang, L.; Zhu, X. Pseudomonas infection affects the growth and development of Aphis gossypii by disrupting energy metabolism and reproductive processes. Insects 2025, 16, 238. [Google Scholar] [CrossRef]
- Walker, A.K. Germ cells need folate to proliferate. Dev. Cell 2016, 38, 8–9. [Google Scholar] [CrossRef]
- Zapata, R.; Piulachs, M.D.; Bellés, X. Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase lower fecundity in the German cockroach: Correlation between the effects on fecundity in vivo with the inhibition of enzymatic activity in embryo cells. Pest Manag. Sci. 2003, 59, 1111–1117. [Google Scholar] [CrossRef]
- Park, H.-G.; Kim, B.-Y.; Kim, J.-M.; Choi, Y.-S.; Yoon, H.-J.; Lee, K.-S.; Jin, B.-R. Upregulation of transferrin and major royal jelly proteins in the spermathecal fluid of mated honeybee (Apis mellifera) queens. Insects 2021, 12, 690. [Google Scholar] [CrossRef]
- Shang, X.; Shen, C.; Liu, J.; Tang, L.; Zhang, H.; Wang, Y.; Wu, W.; Chi, J.; Zhuang, H.; Fei, J.; et al. Serine protease PRSS55 is crucial for male mouse fertility via affecting sperm migration and sperm–egg binding. Cell. Mol. Life Sci. 2018, 75, 4371–4384. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, M.-Y.; Gu, P.-M.; Smagghe, G.; Wang, J.-J. Label-free based quantitative proteomic analysis identifies proteins involved in the testis maturation of Bactrocera dorsalis (Hendel). Comp. Biochem. Physiol. Part D Genom. Proteom. 2018, 25, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, Y.; Xu, C.; Jiao, Q.; Ye, C.; Chen, T.; Yu, X.; Pang, K.; Hao, P. Rice defense against brown planthopper partially by suppressing the expression of transferrin family genes of brown planthopper. J. Agric. Food Chem. 2022, 70, 2839–2850. [Google Scholar] [CrossRef]
- Lin, K.; Zhou, Y.; Tian, H.; Du, X.; Yue, L. Iron-binding transferrins regulate immunity and reproduction via tissue-specific iron redistribution in Spodoptera exigua. Int. J. Biol. Macromol. 2025, 310, 143310. [Google Scholar] [CrossRef]
- Chae, T.H.; Kim, S.; Marz, K.E.; Hanson, P.I.; Walsh, C.A. The hyh mutation uncovers roles for αSnap in apical protein localization and control of neural cell fate. Nat. Genet. 2004, 36, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Tomes, C.N.; De Blas, G.A.; Michaut, M.A.; Farré, E.V.; Cherhitin, O.; Visconti, P.E.; Mayorga, L.S. α-SNAP and NSF are required in a priming step during the human sperm acrosome reaction. Mol. Hum. Reprod. 2005, 11, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.G.; Richmond, R.C. Esterase 6 in Drosophila melanogaster. Reproductive function ofactive and null males at low temperature. Proc. Natl. Acad. Sci. USA 1982, 79, 2962–2966. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, Z.; Gul, H.; Li, X.; Pan, Y.; Zhang, H.; Zhang, Z.; Huang, J.; Emmanouil, R.; Guedes, R.N.C.; et al. Proactive resistance management studies highlight the role of cytochrome P450 genes in the resistance of Tuta absoluta against tetraniliprole. Int. J. Mol. Sci. 2025, 26, 5180. [Google Scholar] [CrossRef]
- Liu, Y.; Dettin, L.E.; Folmer, J.; Zirkin, B.R.; Papadopoulos, V. Abnormal morphology of spermatozoa in cytochrome P450 17α-hydroxylase/17, 20-lyase (CYP17) deficient mice. J. Androl. 2013, 28, 453–460. [Google Scholar] [CrossRef]
- Chambers, I.G.; Kumar, P.; Lichtenberg, J.; Wang, P.; Yu, J.; Phillips, J.D.; Kane, M.A.; Bodine, D.; Hamza, I. MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc. Natl. Acad. Sci. USA 2022, 119, e2111617119. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Lan, J.; Zhang, L.; Chen, H.; Jiang, L.; Yu, H.; Liu, N.; Liao, C.; Han, Q. MDR49 coding for both P-glycoprotein and TMOF transporter functions in ivermectin resistance, trypsin activity inhibition, and fertility in the yellow fever mosquito, Aedes aegypti. Pestic. Biochem. Physiol. 2024, 201, 105899. [Google Scholar] [CrossRef]
- McGraw, K.; Dowling, D.K.; Simmons, L.W. Ejaculate economics: Testing the effects of male sexual history on the trade-off between sperm and immune function in Australian crickets. PLoS ONE 2012, 7, e30172. [Google Scholar] [CrossRef]
- McAfee, A.; Chapman, A.; Pettis, J.S.; Foster, L.J.; Tarpy, D.R. Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun. Biol. 2021, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Yoshimura, S.; Sasaki, T.; Furukawa, S. Influence of Wolbachia infection on antimicrobial peptide gene expressions in a cell line of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). J. Asia-Pac. Entomol. 2021, 24, 1164–1169. [Google Scholar] [CrossRef]
- Lehtinen, D.A.; Harvey, S.; Mulcahy, M.J.; Hollis, T.; Perrino, F.W. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J. Biol. Chem. 2008, 283, 31649–31656. [Google Scholar] [CrossRef]
- Mohr, L.; Toufektchan, E.; von Morgen, P.; Chu, K.; Kapoor, A.; Maciejowski, J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol. Cell 2021, 81, 724–738.e9. [Google Scholar] [CrossRef]
- Schwenke, R.A.; Lazzaro, B.P.; Wolfner, M.F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 2016, 61, 239–256. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, Y.; Gao, D.; Lin, D.; Ma, W.; Chang, D. Metabolic pathways and male fertility: Exploring the role of Sertoli cells in energy homeostasis and spermatogenesis. Am. J. Physiol.-Endocrinol. Metab. 2025, 329, E160–E178. [Google Scholar] [CrossRef] [PubMed]
- Zera, A.J.; Denno, R.F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 1997, 42, 207–230. [Google Scholar] [CrossRef] [PubMed]
- Kliot, A.; Ghanim, M. Fitness costs associated with insecticide resistance. Pest Manag. Sci. 2012, 68, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Monroy Kuhn, J.M.; Meusemann, K.; Korb, J. Disentangling the aging gene expression network of termite queens. BMC Genomics 2021, 22, 339. [Google Scholar] [CrossRef]
- Ichimura, Y.; Waguri, S.; Sou, Y.-s.; Kageyama, S.; Hasegawa, J.; Ishimura, R.; Saito, T.; Yang, Y.; Kouno, T.; Fukutomi, T.; et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 2013, 51, 618–631. [Google Scholar] [CrossRef]
- Aramburu, J.; Carmen Ortells, M.; Tejedor, S.; Buxadé, M.; López-Rodríguez, C. Transcriptional regulation of the stress response by mTOR. Sci. Signal. 2014, 7, re2. [Google Scholar] [CrossRef] [PubMed]
- Bakri, A.; Mehta, K.; Lance, D.R. Sterilizing insects with ionizing radiation. In Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 355–398. [Google Scholar] [CrossRef]
Gene Name | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
TaTREX1 | CCGGAGGAAGAAAACAATCA | TGGTCAACCCTGAGATTTCC |
TaCarE1 | ACTCCGAGTGCTGAGGACAT | TCGAGCCAAGCTCCAAGTAT |
TaCYP405D1 | GGTGCTCCTTTCAGAACCAG | TGCACATTCGCTGAGAGTTT |
TaNrf-6 | TACTGATGATGGCGTTCTGC | AAGGTAGACGGCGTACGAGA |
TaCLPS16 | TGTGTGGAGCCTCACTTCTG | CGTTGGACAAAATGACGTTG |
TaCLPS2 | GCAGATGAAGGCAGAAGAAGA | AACCAGCCAAGTAAGGGTAAG |
Taα-SNAP | CAACACGCCCTTGAGAACTA | TTCCTCATTCTGCTCCTCTAAAC |
TaTsf | GGAGTTCCGTTACGAAGCAG | AGAGAAGCTGGGATCGTTCA |
TaMdr49 | TGTGTGTGGAGTGGTGACCT | CTTCCAGTAGCTCCCTGCAC |
TaAtt2 | TCATCACCATCCGAACTTCA | TATGATGCGGTGTCACCATT |
TaLeb-4 | CCAAGCGCTAAGAGTTACGG | CGGATCATAAGGCTTCGGTA |
TaDef | CGTTCTCGTTGTCATGATGG | GATACAGTGCAGTGCGCAAG |
TaLys2 | GACAAGATAAGCCCGGTCAA | AATCCGTGACGCTTGAAGAT |
TaAtt1 | GCATCCCACATACCGACTCT | GAAGGCTGGCATAGTCTTGG |
TaEF1-α | AGTCTCCTCATACATCAAGAAG | CCTCCTTACGCTCAACAG |
Stage | n | 0 Gy | n | 300 Gy |
---|---|---|---|---|
Egg hatch rate (%) | 320 | 0.922 ± 0.015 a | 820 | 0.331 ± 0.016 b |
Egg (day) | 285 | 4.484 ± 0.034 a | 270 | 4.552 ± 0.042 a |
First instar (d) | 264 | 2.295 ± 0.040 b | 140 | 2.700 ± 0.057 a |
Second instar (d) | 236 | 2.809 ± 0.048 b | 108 | 3.250 ± 0.104 a |
Third instar (d) | 222 | 2.991 ± 0.050 b | 91 | 3.220 ± 0.081 a |
Fourth instar (d) | 196 | 5.842 ± 0.104 b | 77 | 7.377 ± 0.245 a |
Pupa (d) | 168 | 6.690 ± 0.081 b | 50 | 7.280 ± 0.120 a |
APOP (d) | 25 | 0.760 ± 0.202 b | 3 | 2.000 ± 0.538 a |
TPOP (d) | 25 | 24.560 ± 0.337 b | 3 | 27.667 ± 1.120 a |
Biological Traits | n | 0 Gy | n | 300 Gy |
---|---|---|---|---|
Preadult duration (d) | 168 | 24.940 ± 0.177 b | 50 | 27.300 ± 0.445 a |
Preadult survival (sa) (%) | 285 | 58.947 ± 2.912 a | 270 | 18.519 ± 2.351 b |
Female adult duration (d) | 89 | 16.213 ± 0.884 a | 10 | 7.7 ± 1.771 b |
Male adult duration (d) | 79 | 18.734 ± 1.081 a | 40 | 11.075 ± 1.075 b |
Total longevity (d) | 285 | 30.744 ± 0.951 a | 270 | 15.619 ± 0.758 b |
Demographic Parameters | 0 Gy | 300 Gy |
---|---|---|
Fecundity (egg/♀) | 146.367 ± 10.782 a | 53.847 ± 25.149 b |
Intrinsic rate of increase (r) (D−1) | 0.082 ± 0.008 a | −0.005 ± 0.020 b |
Finite rate of increase (λ) (D−1) | 1.086 ± 0.009 a | 0.995 ± 0.020 b |
Net reproduction rate (R0) (offspring) | 9.796 ± 2.096 a | 0.863 ± 0.500 b |
Nf to Nm ratio | 1.127 ± 0.180 a | 0.250 ± 0.091 b |
Mean generation time (T) (days) | 27.729 ± 0.373 b | 30.512 ± 0.714 a |
Samples | Clean Reads | Clean Bases | Q30 (%) | GC Content (%) |
---|---|---|---|---|
CK-1 | 26,314,076 | 7,821,653,579 | 98.52 | 43.33 |
CK-2 | 21,055,084 | 6,268,920,113 | 98.69 | 43.80 |
CK-3 | 19,546,077 | 5,815,720,809 | 98.57 | 42.95 |
IR-1 | 25,163,786 | 7,483,281,060 | 98.64 | 43.20 |
IR-2 | 22,573,216 | 6,718,516,137 | 98.56 | 43.33 |
IR-3 | 23,824,739 | 7,081,532,747 | 97.70 | 43.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhang, H.; Zhang, Q.; Ullah, F.; Pan, Y.; Wang, Y.; Chen, L.; Li, X.; Zhang, J.; Zhou, S.; et al. Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta. Insects 2025, 16, 1062. https://doi.org/10.3390/insects16101062
Pan Y, Zhang H, Zhang Q, Ullah F, Pan Y, Wang Y, Chen L, Li X, Zhang J, Zhou S, et al. Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta. Insects. 2025; 16(10):1062. https://doi.org/10.3390/insects16101062
Chicago/Turabian StylePan, Yuhan, Haixia Zhang, Qinghe Zhang, Farman Ullah, Yiming Pan, Yaru Wang, Limin Chen, Xiaowei Li, Jinming Zhang, Shuxing Zhou, and et al. 2025. "Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta" Insects 16, no. 10: 1062. https://doi.org/10.3390/insects16101062
APA StylePan, Y., Zhang, H., Zhang, Q., Ullah, F., Pan, Y., Wang, Y., Chen, L., Li, X., Zhang, J., Zhou, S., Lu, Y., & Hou, Y. (2025). Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta. Insects, 16(10), 1062. https://doi.org/10.3390/insects16101062