Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Ecological Completeness of Variables
3.2. Essential Variables Used in Existing Models
4. Discussion
Limitations and Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chauvier, Y.; Descombes, P.; Guéguen, M.; Boulangeat, L.; Thuiller, W.; Zimmermann, N.E. Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography 2022, 2022, e05973. [Google Scholar] [CrossRef]
- Díaz, S.; Malhi, Y. Biodiversity: Concepts, Patterns, Trends, and Perspectives. Annu. Rev. Environ. Resour. 2022, 47, 31–63. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Wilson, C.D.; Roberts, D.; Reid, N. Applying species distribution modelling to identify areas of high conservation value for endangered species: A case study using Margaritifera margaritifera (L.). Biol. Conserv. 2011, 144, 821–829. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Burrows, H.; Slatculescu, A.M.; Feng, C.X.; Clow, K.M.; Guillot, C.; Jardine, C.M.; Leighton, P.A.; Krause, P.J.; Kulkarni, M.A. The utility of a maximum entropy species distribution model for Ixodes scapularis in predicting the public health risk of Lyme disease in Ontario, Canada. Ticks Tick-Borne Dis. 2022, 13, 101969. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.C.; Rasplus, J.Y.; Rossi, J.P. Xylella fastidiosa: Climate suitability of European continent. Sci. Rep. 2019, 9, 8844. [Google Scholar] [CrossRef]
- Messina, J.P.; Kraemer, M.U.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchai, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for Zika virus. eLife 2016, 5, e15272. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Bai, C.; Wu, K.; La, T.; Su, Y.; Che, L.; Zhang, M.; Lu, Y.; Gao, P.; Yang, J.; et al. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. Glob. Change Biol. 2023, 29, 3723–3746. [Google Scholar] [CrossRef]
- Bosso, L.; Luchi, N.; Maresi, G.; Cristinzio, G.; Smeraldo, S.; Russo, D. Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: Species distribution models as a tool for forest management planning. For. Ecol. Manag. 2017, 400, 655–664. [Google Scholar] [CrossRef]
- Ikegami, M.; Jenkins, T.A. Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model—Pine Wilt disease as a model case. For. Ecol. Manag. 2018, 409, 343–352. [Google Scholar] [CrossRef]
- Pasanisi, E.; Pace, D.; Orasi, A.; Vitale, M.; Arcangeli, A. A global systematic review of species distribution modelling approaches for cetaceans and sea turtles. Ecol. Inform. 2024, 82, 102700. [Google Scholar] [CrossRef]
- Benavides Rios, E.; Sadler, J.; Graham, L.; Matthews, T.J. Species distribution models and island biogeography: Challenges and prospects. Glob. Ecol. Conserv. 2024, 51, e02943. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Leathwick, J.R.; Whitehead, D. Soil and atmospheric water deficits and the distribution of New Zealand’s indigenous tree species. Funct. Ecol. 2001, 15, 233–242. [Google Scholar] [CrossRef]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Jarnevich, C.S.; Stohlgren, T.J.; Kumar, S.; Morisette, J.T.; Holcombe, T.R. Caveats for correlative species distribution modeling. Ecol. Inform. 2015, 29, 6–15. [Google Scholar] [CrossRef]
- Mod, H.K.; Scherrer, D.; Luoto, M.; Guisan, A. What we use is not what we know: Environmental predictors in plant distribution models. J. Veg. Sci. 2016, 27, 1308–1322. [Google Scholar] [CrossRef]
- Vignali, S.; Barras, A.G.; Arlettaz, R.; Braunisch, V. SDMtune: An R package to tune and evaluate species distribution models. Ecol. Evol. 2020, 10, 11488–11506. [Google Scholar] [CrossRef]
- Adde, A.; Rey, P.L.; Fopp, F.; Petitpierre, B.; Schweiger, A.K.; Broennimann, O.; Lehmann, A.; Zimmermann, N.E.; Altermatt, F.; Pellissier, L.; et al. Too many candidates: Embedded covariate selection procedure for species distribution modelling with the covsel R package. Ecol. Inform. 2023, 75, 102080. [Google Scholar] [CrossRef]
- Berec, L.; Gelbič, I.; Šebesta, O. Worthy of Their Name: How Floods Drive Outbreaks of Two Major Floodwater Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 76–88. [Google Scholar] [CrossRef]
- Vaux, A.; Watts, D.; Findlay-Wilson, S.; Johnston, C.; Dallimore, T.; Drage, P.; Medlock, J. Identification, surveillance and management of Aedes vexans in a flooded river valley in Nottinghamshire, United Kingdom. J. Eur. Mosq. Control Assoc. 2021, 39, 15–25. [Google Scholar] [CrossRef]
- Hesson, J.; Schäfer, M.; Lundström, J. Increased abundance of floodwater mosquito species over three seasons in Forshaga municipality, western Sweden. J. Eur. Mosq. Control Assoc. 2023, 41, 25–34. [Google Scholar] [CrossRef]
- Gjullin, C.M.; Yates, W.W.; Stage, H.H. Studies on Aedes xexans (Meig.) and Aedes Sticticus (Meig.), Flood-Water Mosquitoes, in the Lower Columbia River Valley. Ann. Entomol. Soc. Am. 1950, 43, 262–275. [Google Scholar] [CrossRef]
- Becker, N.; Petrić, D.; Zgomba, M.; Boase, C.; Madon, M.B.; Dahl, C.; Kaiser, A. Biology of Mosquitoes. In Mosquitoes: Identification, Ecology and Control; Springer International Publishing: Cham, Switzerland, 2020; pp. 11–27. [Google Scholar] [CrossRef]
- Kampen, H.; Walther, D. Vector Potential of Mosquito Species (Diptera: Culicidae) Occurring in Central Europe. In Mosquito-Borne Diseases: Implications for Public Health; Benelli, G., Mehlhorn, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 41–68. [Google Scholar] [CrossRef]
- Martinet, J.P.; Ferté, H.; Failloux, A.B.; Schaffner, F.; Depaquit, J. Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review. Viruses 2019, 11, 1059. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Lippi, C.A.; Mundis, S.J.; Sippy, R.; Flenniken, J.M.; Chaudhary, A.; Hecht, G.; Carlson, C.J.; Ryan, S.J. Trends in mosquito species distribution modeling: Insights for vector surveillance and disease control. Parasit. Vectors 2023, 16, 302. [Google Scholar] [CrossRef]
- Corporation for Digital Scholarship. Zotero, Version 6.0.23; Corporation for Digital Scholarship: Vienna, VA, USA, 2024. Available online: https://www.zotero.org/ (accessed on 12 October 2025).
- Smith, A.B.; Santos, M.J. Testing the ability of species distribution models to infer variable importance. Ecography 2020, 43, 1801–1813. [Google Scholar] [CrossRef]
- Pothmann, P.; Kampen, H.; Werner, D.; Thulke, H.H. Data from: Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae). Zenodo. 2025. Available online: https://doi.org/10.5281/zenodo.14603894 (accessed on 12 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Diuk-Wasser, M.A.; Brown, H.E.; Andreadis, T.G.; Fish, D. Modeling the Spatial Distribution of Mosquito Vectors for West Nile Virus in Connecticut, USA. Vector-Borne Zoonotic Dis. 2006, 6, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Tourre, Y.; Lacaux, J.P.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Mapping of Zones Potentially Occupied by Aedes vexans and Culex poicilipes Mosquitoes, the Main Vectors of Rift Valley Fever in Senegal. Geospat. Health 2008, 3, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Vignolles, C.; Lacaux, J.P.; Tourre, Y.M.; Bigeard, G.; Ndione, J.A.; Lafaye, M. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: Dynamics and risk mapping. Geospat. Health 2009, 3, 211–220. [Google Scholar] [CrossRef]
- Larson, S.R.; DeGroote, J.P.; Bartholomay, L.C.; Sugumaran, R. Ecological Niche Modeling of Potential West Nile Virus Vector Mosquito Species in Iowa. J. Insect Sci. 2010, 10, 110. [Google Scholar] [CrossRef]
- Caminade, C.; Ndione, J.A.; Kebe, C.M.F.; Jones, A.E.; Danuor, S.; Tay, S.; Tourre, Y.M.; Lacaux, J.P.; Vignolles, C.; Duchemin, J.B.; et al. Mapping Rift Valley fever and malaria risk over West Africa using climatic indicators. Atmos. Sci. Lett. 2011, 12, 96–103. [Google Scholar] [CrossRef]
- Chuang, T.W.; Henebry, G.M.; Kimball, J.S.; VanRoekel-Patton, D.L.; Hildreth, M.B.; Wimberly, M.C. Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sens. Environ. 2012, 125, 147–156. [Google Scholar] [CrossRef]
- Ducheyne, E.; Versteirt, V.; Hendrickx, G. Abundance of Rift Valley Fever vectors in Europe and the Mediterranean Basin. EFSA Support. Publ. 2013, 10, 420E. [Google Scholar] [CrossRef]
- Tran, A.; Ippoliti, C.; Balenghien, T.; Conte, A.; Gely, M.; Calistri, P.; Goffredo, M.; Baldet, T.; Chevalier, V. A Geographical Information System-Based Multicriteria Evaluation to Map Areas at Risk for Rift Valley Fever Vector-Borne Transmission in Italy. Transbound. Emerg. Dis. 2013, 60, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Versteirt, V.; Ducheyne, E.; Schaffner, F.; Hendrickx, G. Systematic literature review on the geographic distribution of rift valley fever vectors in Europe and the neighbouring countries of the Mediterranean Basin. EFSA Support. Publ. 2013, 10, 412E. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Mulatti, P.; Severini, F.; Boccolini, D.; Romi, R.; Bongiorno, G.; Khoury, C.; Bianchi, R.; Montarsi, F.; Patregnani, T.; et al. Ecological Niche Modelling of Potential West Nile Virus Vector Mosquito Species and Their Geographical Association with Equine Epizootics in Italy. EcoHealth 2014, 11, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Talla, C.; Diallo, D.; Dia, I.; Ba, Y.; Ndione, J.A.; Sall, A.A.; Morse, A.; Diop, A.; Diallo, M. Statistical Modeling of the Abundance of Vectors of West African Rift Valley Fever in Barkédji, Senegal. PLoS ONE 2014, 9, e114047. [Google Scholar] [CrossRef]
- Arsevska, E.; Hellal, J.; Mejri, S.; Hammami, S.; Marianneau, P.; Calavas, D.; Hénaux, V. Identifying Areas Suitable for the Occurrence of Rift Valley Fever in North Africa: Implications for Surveillance. Transbound. Emerg. Dis. 2016, 63, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, F.; Versteirt, V.; Bortel, W.V.; Zeller, H.; Wint, W.; Alexander, N.S. VBORNET gap analysis: Mosquito vector distribution models utilised to identify areas of potential species distribution in areas lacking records. Open Health Data 2016, 4, e6. [Google Scholar] [CrossRef]
- Giordano, B.V.; Turner, K.W.; Hunter, F.F. Geospatial Analysis and Seasonal Distribution of West Nile Virus Vectors (Diptera: Culicidae) in Southern Ontario, Canada. Int. J. Environ. Res. Public Health 2018, 15, 614. [Google Scholar] [CrossRef]
- Tran, A.; Fall, A.G.; Biteye, B.; Ciss, M.; Gimonneau, G.; Castets, M.; Seck, M.T.; Chevalier, V. Spatial Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived Meteorological Estimates in Population Dynamics Models. Remote Sens. 2019, 11, 1024. [Google Scholar] [CrossRef]
- Wint, W.; Petric, D.; Bortel, W.; Alexander, N.; Schaffner, F. RVF vector spatial distribution models: Vector abundance. EFSA Support. Publ. 2020, 17, 1847E. [Google Scholar] [CrossRef]
- Abdelkrim, O.; Samia, B.; Said, Z.; Souad, L. Modeling and mapping the habitat suitability and the potential distribution of Arboviruses vectors in Morocco. Parasite 2021, 28, 37. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 2011, 34, 232–243. [Google Scholar] [CrossRef]
- Wieland, R.; Kuhls, K.; Lentz, H.H.K.; Conraths, F.; Kampen, H.; Werner, D. Combined climate and regional mosquito habitat model based on machine learning. Ecol. Model. 2021, 452, 109594. [Google Scholar] [CrossRef]
- Outammassine, A.; Zouhair, S.; Loqman, S. Global potential distribution of three underappreciated arboviruses vectors (Aedes japonicus, Aedes vexans and Aedes vittatus) under current and future climate conditions. Transbound. Emerg. Dis. 2022, 69, e1160–e1171. [Google Scholar] [CrossRef]
- Li, Y.; An, Q.; Sun, Z.; Gao, X.; Wang, H. Distribution areas and monthly dynamic distribution changes of three Aedes species in China: Aedes aegypti, Aedes albopictus and Aedes vexans. Parasit. Vectors 2023, 16, 297. [Google Scholar] [CrossRef]
- Ludwig, A.; Rousseu, F.; Kotchi, S.O.; Allostry, J.; Fournier, R.A. Mapping the abundance of endemic mosquito-borne diseases vectors in southern Quebec. BMC Public Health 2023, 23, 924. [Google Scholar] [CrossRef]
- Talbot, B.; Kulkarni, M.A.; Rioux-Rousseau, M.; Siebels, K.; Kotchi, S.O.; Ogden, N.H.; Ludwig, A. Ecological Niche and Positive Clusters of Two West Nile Virus Vectors in Ontario, Canada. EcoHealth 2023, 20, 249–262. [Google Scholar] [CrossRef]
- Leroy, M.; Bicheron, P.; Brockmann, C.; Krämer, U.; Miras, B.; Huc, M.; Ninô, F.; Defourny, P.; Vancutsem, C.; Petit, D.; et al. GlobCover: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. Remote Sens. Environ. 2008, 114, 2091–2107. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- European Environment Agency. CORINE Land Cover. 2021. Available online: https://land.copernicus.eu/en/products/corine-land-cover?tab=datasets (accessed on 12 October 2025).
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V061 [Data Set]. 2021. Available online: https://doi.org/10.5067/MODIS/MOD13A1.061 (accessed on 27 January 2025).
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Bowler, D.E.; Callaghan, C.T.; Bhandari, N.; Henle, K.; Benjamin Barth, M.; Koppitz, C.; Klenke, R.; Winter, M.; Jansen, F.; Bruelheide, H.; et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, 2022, e06219. [Google Scholar] [CrossRef]
- Reddy, S.; Dávalos, L.M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 2003, 30, 1719–1727. [Google Scholar] [CrossRef]
- Kadmon, R.; Farber, O.; Danin, A. Effect of Roadside Bias on the Accuracy of Predictive Maps Produced by Bioclimatic Models. Ecol. Appl. 2004, 14, 401–413. [Google Scholar] [CrossRef]
- Bystriakova, N.; Peregrym, M.; Erkens, R.H.J.; Bezsmertna, O.; Schneider, H. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers. 2012, 10, 305–315. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Troudet, J.; Grandcolas, P.; Blin, A.; Vignes-Lebbe, R.; Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 2017, 7, 9132. [Google Scholar] [CrossRef]
- Titley, M.A.; Snaddon, J.L.; Turner, E.C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 2017, 12, e0189577. [Google Scholar] [CrossRef]
- Hughes, A.C.; Orr, M.C.; Ma, K.; Costello, M.J.; Waller, J.; Provoost, P.; Yang, Q.; Zhu, C.; Qiao, H. Sampling biases shape our view of the natural world. Ecography 2021, 44, 1259–1269. [Google Scholar] [CrossRef]
- García-Roselló, E.; González-Dacosta, J.; Lobo, J.M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 2023, 283, 110118. [Google Scholar] [CrossRef]
- Nasci, R.S. Variations in the Blood-Feeding Patterns of Aedes vexans and Aedes trivittatus (Diptera: Culicidae)1. J. Med. Entomol. 1984, 21, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Molaei, G.; Andreadis, T.G. Identification of Avian- and Mammalian-Derived Bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and Its Implication for West Nile Virus Transmission in Connecticut, U.S.A. J. Med. Entomol. 2006, 43, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Biteye, B.; Fall, A.G.; Seck, M.T.; Ciss, M.; Diop, M.; Gimonneau, G. Host-feeding patterns of Aedes (Aedimorphus) vexans arabiensis, a Rift Valley Fever virus vector in the Ferlo pastoral ecosystem of Senegal. PLoS ONE 2019, 14, e0215194. [Google Scholar] [CrossRef]
- Wilkerson, R.C.; Linton, Y.M.; Strickman, D. Mosquitoes of the World, 1st ed.; Hardcover; 199 Line Drawings, 168 Color Plates; Johns Hopkins University Press: Baltimore, MD, USA, 2021; Volume 1–2, p. 1332. [Google Scholar] [CrossRef]
- Poggio, L.; Simonetti, E.; Gimona, A. Enhancing the WorldClim data set for national and regional applications. Sci. Total Environ. 2018, 625, 1628–1643. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Hostert, P.; Kuemmerle, T.; Broich, M. Regional matters: On the usefulness of regional land-cover datasets in times of global change. Remote Sens. Ecol. Conserv. 2022, 8, 272–283. [Google Scholar] [CrossRef]
- Hemp, A.; Hemp, J. Weather or not—Global climate databases: Reliable on tropical mountains? PLoS ONE 2024, 19, e0299363. [Google Scholar] [CrossRef]
- Svoma, B.M.; Cerveny, R. Analyzing bias in prominent climatic data sets. Prog. Phys. Geogr. Earth Environ. 2012, 36, 333–347. [Google Scholar] [CrossRef]
- Roberts, D.R.; Wood, W.H.; Marshall, S.J. Assessments of downscaled climate data with a high-resolution weather station network reveal consistent but predictable bias. Int. J. Climatol. 2019, 39, 3091–3103. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef] [PubMed]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Miao, C.; Su, L.; Sun, Q.; Duan, Q. A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res. Atmos. 2016, 121, 5718–5735. [Google Scholar] [CrossRef]
- Beyer, R.; Krapp, M.; Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim. Past 2020, 16, 1493–1508. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Qiao, H.; Soberón, J.; Peterson, A.T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
Category | Description | Subcategory | Description |
---|---|---|---|
Land characteristic | Data describing the physical features and conditions of the land, often observable from a ‘top-down’ perspective. | Artificial | Details about human-made structures and landscapes, such as buildings, roads, and urban developments. |
Bare | Details about areas with minimal or no vegetation, such as deserts, rocky regions, or barren soils. | ||
Infrared | Metrics derived from infrared sensing, including vegetation health, water stress, or thermal properties. | ||
Terrain | Data on landscape features, such as elevation, slope, or landforms. | ||
Vegetation | Information about plant life, such as vegetation types, density, or green cover. | ||
Water | Data on water bodies, including rivers, lakes, ponds, and other forms of standing or flowing water. | ||
Wetland | Information on marshes, swamps, bogs, or areas seasonally saturated with water. | ||
Missing data (-) | Missing or unavailable values (e.g., cloud cover). | ||
Not specified (unspec.) | Variables without detailed classification. | ||
Population | Data on the size or distribution of populations within a given area. | Distance | Measures of distance to the nearest population center. |
Human | Data on human activities, population density, or anthropogenic impacts. | ||
Other animal | Information about the presence or activities of non-human animal species. | ||
Water characteristic | Data describing the physical and chemical attributes of water bodies. | Amount | Information about the amount of water available to a system or organism. |
Quality | Data on the chemical or biological quality of water. | ||
Soil water | Metrics related to soil moisture or groundwater levels. | ||
Weather | Data describing atmospheric conditions. | Temperature | Metrics related to temperature and associated variations. |
Precipitation | Data on rainfall and other forms of precipitation. | ||
Radiation | Details about solar radiation, influencing environmental conditions. | ||
Humidity | Information on atmospheric moisture levels. | ||
Not specified (unspec.) | Variables without detailed classification. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pothmann, P.; Kampen, H.; Werner, D.; Thulke, H.-H. Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae). Insects 2025, 16, 1061. https://doi.org/10.3390/insects16101061
Pothmann P, Kampen H, Werner D, Thulke H-H. Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae). Insects. 2025; 16(10):1061. https://doi.org/10.3390/insects16101061
Chicago/Turabian StylePothmann, Peter, Helge Kampen, Doreen Werner, and Hans-Hermann Thulke. 2025. "Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae)" Insects 16, no. 10: 1061. https://doi.org/10.3390/insects16101061
APA StylePothmann, P., Kampen, H., Werner, D., & Thulke, H.-H. (2025). Systematic Review of Variable Selection Bias in Species Distribution Models for Aedes vexans (Diptera: Culicidae). Insects, 16(10), 1061. https://doi.org/10.3390/insects16101061