Computational Modeling of Uncertainty and Volatility Beliefs in Escape-Avoidance Learning: Comparing Individuals with and Without Suicidal Ideation
Abstract
1. Introduction
Study Aims
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Clinical Interview
2.2.2. Behavioral Task
2.2.3. Computational Modeling
2.2.4. Statistical Analysis
3. Results
3.1. Fixed Parameters
3.2. Trial-by-Trial Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garnett, M.F.; Curtin, S.C. Suicide Mortality in the United States, 2001–2021; CDC: Atlanta, GA, USA, 2023. [Google Scholar] [CrossRef]
- Martinez-Ales, G.; Hernandez-Calle, D.; Khauli, N.; Keyes, K.M. Why Are Suicide Rates Increasing in the United States? Towards a Multilevel Reimagination of Suicide Prevention. Curr. Top. Behav. Neurosci. 2020, 46, 1–23. [Google Scholar] [CrossRef]
- Baumeister, R.F. Suicide as escape from self. Psychol. Rev. 1990, 97, 90–113. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.C.; Kirtley, O.J. The integrated motivational–volitional model of suicidal behaviour. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170268. [Google Scholar] [CrossRef] [PubMed]
- Van Orden, K.A.; Witte, T.K.; Cukrowicz, K.C.; Braithwaite, S.; Selby, E.A.; Joiner, T.E. The Interpersonal Theory of Suicide. Psychol. Rev. 2010, 117, 575–600. [Google Scholar] [CrossRef] [PubMed]
- Millner, A.J.; den Ouden, H.E.M.; Gershman, S.J.; Glenn, C.R.; Kearns, J.C.; Bornstein, A.M.; Marx, B.P.; Keane, T.M.; Nock, M.K. Suicidal thoughts and behaviors are associated with an increased decision-making bias for active responses to escape aversive states. J. Abnorm. Psychol. 2019, 128, 106–118. [Google Scholar] [CrossRef]
- Blacutt, M.; O’Loughlin, C.M.; Ammerman, B.A. Bias toward escape responding during reinforcement learning among those with suicidal ideation. J. Psychiatr. Res. 2025, 181, 586–595. [Google Scholar] [CrossRef]
- Jaroszewski, A.C.; Millner, A.J.; Gershman, S.J.; Franz, P.J.; Bentley, K.H.; Kleiman, E.M.; Nock, M.K. Past suicide attempt is associated with a weaker decision-making bias to actively escape from suicide-related stimuli. J. Psychopathol. Clin. Sci. 2025, 134, 503–519. [Google Scholar] [CrossRef]
- Pedersen, M.L.; Frank, M.J.; Biele, G. The drift diffusion model as the choice rule in reinforcement learning. Psychon. Bull. Rev. 2017, 24, 1234–1251. [Google Scholar] [CrossRef]
- Ratcliff, R.; McKoon, G. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef]
- Dombrovski, A.Y.; Hallquist, M.N. Search for solutions, learning, simulation, and choice processes in suicidal behavior. Wiley Interdiscip. Rev. Cogn. Sci. 2022, 13, e1561. [Google Scholar] [CrossRef]
- Tsypes, A.; Szanto, K.; Bridge, J.A.; Brown, V.M.; Keilp, J.G.; Dombrovski, A.Y. Delay Discounting in Suicidal Behavior: Myopic Preference or Inconsistent Valuation? J. Psychopathol. Clin. Sci. 2022, 131, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Marvin, C.; Mitaj, D.; Rogers, M.L. Identifying latent classes of suicidal ambivalence: Associations with suicide risk correlates and outcomes. Suicide Life-Threat. Behav. 2024, 54, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Karvelis, P.; Diaconescu, A.O. A Computational Model of Hopelessness and Active-Escape Bias in Suicidality. Comput. Psychiatry 2022, 6, 34–59. [Google Scholar] [CrossRef]
- May, A.M.; Pachkowski, M.C.; Klonsky, E.D. Motivations for suicide: Converging evidence from clinical and community samples. J. Psychiatr. Res. 2020, 123, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Mathys, C.D.; Daunizeau, J.; Friston, K.J.; Stephan, K.E. A Bayesian Foundation for Individual Learning Under Uncertainty. Front. Hum. Neurosci. 2011, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Mathys, C.D.; Lomakina, E.I.; Daunizeau, J.; Iglesias, S.; Brodersen, K.H.; Friston, K.J.; Stephan, K.E. Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 2014, 8, 825. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Linehan, M.M.; Comtois, K.A.; Ward-Ciesielski, E.F. Assessing and Managing Risk with Suicidal Individuals. Cogn. Behav. Pract. 2012, 19, 218–232. [Google Scholar] [CrossRef]
- Nock, M.K.; Holmberg, E.B.; Photos, V.I.; Michel, B.D. Self-Injurious Thoughts and Behaviors Interview: Development, reliability, and validity in an adolescent sample. Psychol. Assess. 2007, 19, 309–317. [Google Scholar] [CrossRef]
- Millner, A.J.; Gershman, S.J.; Nock, M.K.; Den Ouden, H.E.M. Pavlovian Control of Escape and Avoidance. J. Cogn. Neurosci. 2018, 30, 1379–1390. [Google Scholar] [CrossRef]
- Frässle, S.; Aponte, E.A.; Bollmann, S.; Brodersen, K.H.; Do, C.T.; Harrison, O.K.; Harrison, S.J.; Heinzle, J.; Iglesias, S.; Kasper, L.; et al. TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Front. Psychiatry 2021, 12, 680811. [Google Scholar] [CrossRef]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Rudd, M.D. The Suicidal Mode: A Cognitive-Behavioral Model of Suicidality. Suicide Life-Threat. Behav. 2000, 30, 18–33. [Google Scholar] [CrossRef]
- Hallensleben, N.; Glaesmer, H.; Forkmann, T.; Rath, D.; Strauss, M.; Kersting, A.; Spangenberg, L. Predicting suicidal ideation by interpersonal variables, hopelessness and depression in real-time. Eur. Psychiatry 2019, 56, 43–50. [Google Scholar] [CrossRef]
- Qiu, T.; Klonsky, E.D.; Klein, D.N. Hopelessness predicts suicidal ideation but not attempts: A 10-year longitudinal study. Suicide Life-Threat. Behav. 2017, 47, 718–722. [Google Scholar] [CrossRef]
- Miranda, R.; Valderrama, J.; Tsypes, A.; Gadol, E.; Gallagher, M. Cognitive inflexibility and suicidal ideation: Mediating role of brooding and hopelessness. Psychiatry Res. 2013, 210, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Al-Dajani, N.; Uliaszek, A.A.; Hamdullahpur, K. It’s the thought that counts: Belief in suicide as an escape moderates the relationship between emotion dysregulation and suicidal ideation cross-sectionally and longitudinally. Borderline Personal. Disord. Emot. Dysregulation 2019, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.J.; Bauer, D.J.; Willoughby, M.T. Testing Main Effects and Interactions in Latent Curve Analysis. Psychol. Methods 2004, 9, 220–237. [Google Scholar] [CrossRef] [PubMed]



| Trial Description | Correct Response | |
|---|---|---|
| Go | No-Go | |
| Trial start: Aversive sound Correct response: Terminates sound Incorrect response: Sound continues | Active escape | Passive escape |
| Trial start: Silence Correct response: Silence continues Incorrect response: Sound starts | Active avoidance | Passive avoidance |
| SI History (n = 58) | No SI History (n = 62) | Comparison | |
|---|---|---|---|
| Age | 18.7 ± 0.88 | 19.5 ± 1.54 | t(86.5) = −3.3, p = 0.001 a |
| Sex (Female), %(n) | 65.0% | 66.1% | χ2(1) < 0.0001, p = 0.99 b |
| Race (Non-White), %(n) | χ2(1) = 1.51, p = 0.21 b | ||
| Asian | 12.1% (7) | 9.7% (6) | – |
| Black | 13.8% (8) | 3.2% (2) | – |
| Middle Eastern | 5.2% (3) | 3.2% (2) | – |
| Multiracial | 6.9% (4) | 9.7% (6) | – |
| White | 62.1% (36) | 74.2% (46) | – |
| Accuracy (%) | – | ||
| Escape Trials | 77.7 ± 17.3 | 80.4 ± 15.8 | t(115.9) = −0.67 p = 0.51 a |
| Avoid Trials | 75.6 ± 16.2 | 78.5 ± 17.3 | t(117.9) = −0.63, p = 0.53 a |
| Go Trials | 79.6 ± 19.0 | 78.5 ± 18.7 | t(110.1) = 0.10, p = 0.91 a |
| No-Go Trials | 74.2 ± 20.3 | 79.9 ± 15.5 | t(118.0) = −1.21, p = 0.22 a |
| Intercept | Trial # | SI History | Condition | Trial # *SI History | Trial # *Escape | SI History *Escape | |
|---|---|---|---|---|---|---|---|
| ω2 | −8.39 [−8.74, −8.04] | - | 0.09 [−0.42, 0.58] | −0.13 [−0.61, 0.35] | - | - | 0.45 [−0.24, 1.14] |
| ω3 | −5.99 [−6.00, −5.98] | - | −0.00 [−0.02, 0.01] | 0.01 [−0.01, 0.03] | - | - | −0.00 [−0.03, 0.02] |
| β | 1.70 [0.06, 3.31] | - | 0.80 [−1.62, 3.18] | 1.10 [0.11, 2.09] | - | - | −0.56 [−2.00, 0.90] |
| μ2 | −0.0199 [−0.0745, 0.0322] | 0.00660 [0.00636, 0.00684] | 0.0179 [−0.0539, 0.0958] | 0.0152 [−0.001, 0.0312] | 0.00113 [0.00077, 0.00149] | −0.00082 [−0.00115, −0.00049] | −0.0188 [−0.0425, 0.00491] |
| μ3 | 1.00 [1.00, 1.00] | −0.00 [−0.00, 0.00] | −0.00012 [−0.00038, 0.00013] | 0.00008 [−0.00016, 0.00033] | −0.00002 [−0.00002, −0.00001] | −0.00 [−0.00001, 0.00] | −0.00025 [−0.0006, 0.00011] |
| σ2 | 0.109 [0.0794, 0.138] | −0.00039 [−0.0005, −0.00029] | 0.00484 [−0.0355, 0.0466] | −0.0126 [−0.0198, −0.00544] | 0.0001 [−0.00006, 0.00026] | 0.00002 [−0.00013, 0.00017] | 0.0232 [0.0126, 0.0337] |
| σ3 | 0.992 [0.973, 1.01] | 0.0023 [0.00223, 0.00236] | −0.00546 [−0.0315, 0.0191] | 0.00184 [−0.00276, 0.00654] | −0.00017 [−0.00027, −0.00006] | 0.00014 [0.00004, 0.00023] | −0.00566 [−0.0126, 0.00103] |
| ε2 | 0.00622 [0.00153, 0.011] | −0.00001 [−0.00011, 0.00009] | 0.00202 [−0.00502, 0.0091] | −0.00013 [−0.00689, 0.00668] | −0.00001 [−0.00016, 0.00014] | −0.00001 [−0.00015, 0.00013] | −0.00206 [−0.012, 0.00793] |
| ε3 | −0.005 [−0.0107, 0.00066] | −0.00035 [−0.00045, −0.00025] | −0.00412 [−0.0123, 0.00411] | 0.00118 [−0.00579, 0.00802] | 0.00007 [−0.00008, 0.00023] | 0.00003 [−0.00011, 0.00017] | 0.00317 [−0.00701, 0.0134] |
| ψ2 | 0.108 [0.08, 0.136] | −0.00039 [−0.0005, −0.00029] | 0.00943 [−0.0282, 0.0498] | −0.0126 [−0.0196, −0.00535] | 0.0001 [−0.00006, 0.00026] | 0.00002 [−0.00013, 0.00016] | 0.0232 [0.0126, 0.0336] |
| ψ3 | 10.0 [9.2, 10.8] | 0.156 [0.152, 0.16] | −0.191 [−1.22, 0.876] | −0.282 [−0.555, −0.015] | −0.00257 [−0.00853, 0.00336] | 0.0146 [0.00912, 0.0201] | 0.106 [−0.29, 0.514] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blacutt, M.; O’Loughlin, C.M.; Ammerman, B.A. Computational Modeling of Uncertainty and Volatility Beliefs in Escape-Avoidance Learning: Comparing Individuals with and Without Suicidal Ideation. J. Pers. Med. 2025, 15, 604. https://doi.org/10.3390/jpm15120604
Blacutt M, O’Loughlin CM, Ammerman BA. Computational Modeling of Uncertainty and Volatility Beliefs in Escape-Avoidance Learning: Comparing Individuals with and Without Suicidal Ideation. Journal of Personalized Medicine. 2025; 15(12):604. https://doi.org/10.3390/jpm15120604
Chicago/Turabian StyleBlacutt, Miguel, Caitlin M. O’Loughlin, and Brooke A. Ammerman. 2025. "Computational Modeling of Uncertainty and Volatility Beliefs in Escape-Avoidance Learning: Comparing Individuals with and Without Suicidal Ideation" Journal of Personalized Medicine 15, no. 12: 604. https://doi.org/10.3390/jpm15120604
APA StyleBlacutt, M., O’Loughlin, C. M., & Ammerman, B. A. (2025). Computational Modeling of Uncertainty and Volatility Beliefs in Escape-Avoidance Learning: Comparing Individuals with and Without Suicidal Ideation. Journal of Personalized Medicine, 15(12), 604. https://doi.org/10.3390/jpm15120604

