Previous Issue
Volume 9, September

Table of Contents

Life, Volume 9, Issue 4 (December 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System
Life 2019, 9(4), 79; https://doi.org/10.3390/life9040079 - 19 Oct 2019
Viewed by 123
Abstract
Nitrate is common in Mars sediments owing to long-term atmospheric photolysis, oxidation, and potentially, impact shock heating. The Atacama Desert in Chile, which is the driest region on Earth and rich in nitrate deposits, is used as a Mars analog in this study [...] Read more.
Nitrate is common in Mars sediments owing to long-term atmospheric photolysis, oxidation, and potentially, impact shock heating. The Atacama Desert in Chile, which is the driest region on Earth and rich in nitrate deposits, is used as a Mars analog in this study to explore the potential effects of high nitrate levels on growth of extremophilic ecosystems. Seven study sites sampled across an aridity gradient in the Atacama Desert were categorized into 3 clusters—hyperarid, middle, and arid sites—as defined by essential soil physical and chemical properties. Intriguingly, the distribution of nitrate concentrations in the shallow subsurface suggests that the buildup of nitrate is not solely controlled by precipitation. Correlations of nitrate with SiO2/Al2O3 and grain sizes suggest that sedimentation rates may also be important in controlling nitrate distribution. At arid sites receiving more than 10 mm/yr precipitation, rainfall shows a stronger impact on biomass than nitrate does. However, high nitrate to organic carbon ratios are generally beneficial to N assimilation, as evidenced both by soil geochemistry and enriched culturing experiments. This study suggests that even in the absence of precipitation, nitrate levels on a more recent, hyperarid Mars could be sufficiently high to benefit potentially extant Martian microorganisms. Full article
(This article belongs to the Special Issue Selected Papers from 8th Astrobiology Society of Britain Conference)
Show Figures

Figure 1

Open AccessArticle
Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection
Life 2019, 9(4), 78; https://doi.org/10.3390/life9040078 - 03 Oct 2019
Viewed by 299
Abstract
The problem of the emergence and survival of self-replicating molecules in origin-of-life scenarios is plagued by the error catastrophe, which is usually escaped by considering effects of compartmentalization, as in the stochastic corrector model. By addressing the problem in a simple system composed [...] Read more.
The problem of the emergence and survival of self-replicating molecules in origin-of-life scenarios is plagued by the error catastrophe, which is usually escaped by considering effects of compartmentalization, as in the stochastic corrector model. By addressing the problem in a simple system composed of a self-replicating molecule (a replicase) and a parasite molecule that needs the replicase for copying itself, we show that transient (rather than permanent) compartmentalization is sufficient to the task. We also exhibit a regime in which the concentrations of the two kinds of molecules undergo sustained oscillations. Our model should be relevant not only for origin-of-life scenarios but also for describing directed evolution experiments, which increasingly rely on transient compartmentalization with pooling and natural selection. Full article
(This article belongs to the Section Origin of Life)
Open AccessReview
Twenty Years of “Lipid World”: A Fertile Partnership with David Deamer
Life 2019, 9(4), 77; https://doi.org/10.3390/life9040077 - 20 Sep 2019
Viewed by 344
Abstract
“The Lipid World” was published in 2001, stemming from a highly effective collaboration with David Deamer during a sabbatical year 20 years ago at the Weizmann Institute of Science in Israel. The present review paper highlights the benefits of this scientific interaction and [...] Read more.
“The Lipid World” was published in 2001, stemming from a highly effective collaboration with David Deamer during a sabbatical year 20 years ago at the Weizmann Institute of Science in Israel. The present review paper highlights the benefits of this scientific interaction and assesses the impact of the lipid world paper on the present understanding of the possible roles of amphiphiles and their assemblies in the origin of life. The lipid world is defined as a putative stage in the progression towards life’s origin, during which diverse amphiphiles or other spontaneously aggregating small molecules could have concurrently played multiple key roles, including compartment formation, the appearance of mutually catalytic networks, molecular information processing, and the rise of collective self-reproduction and compositional inheritance. This review brings back into a broader perspective some key points originally made in the lipid world paper, stressing the distinction between the widely accepted role of lipids in forming compartments and their expanded capacities as delineated above. In the light of recent advancements, we discussed the topical relevance of the lipid worldview as an alternative to broadly accepted scenarios, and the need for further experimental and computer-based validation of the feasibility and implications of the individual attributes of this point of view. Finally, we point to possible avenues for exploring transition paths from small molecule-based noncovalent structures to more complex biopolymer-containing proto-cellular systems. Full article
(This article belongs to the Special Issue Themed Issue Commemorating Prof. David Deamer's 80th Birthday)
Show Figures

Figure 1

Previous Issue
Back to TopTop