# Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Transient Compartmentalization with a Fixed Inoculum Size

- Inoculate the compartments.
- Maturate the compartments.
- Pool compartment contents.

#### 2.2. Transient Compartmentalization with Variable Inoculum Size

## 3. Results

#### 3.1. Fixed Inoculum Size

#### 3.2. Variable Inoculum Size

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Exact Solution of the Maturation Equations

## Appendix B. Derivation of the Equations in the Λ ≫ 1 Limit

## Appendix C. Analysis of The Bifurcation

**Figure A1.**Maximal modulus and maximal imaginary part of eigenvalues of the Jacobian corresponding to Equation (6) for a carrying capacity $K=60$.

## References

- Dyson, F. Origins of Life; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Spiegelman, S.; Haruna, I.; Holland, I.B.; Beaudreau, G.; Mills, D. The synthesis of a self-propagating infectious nucleic acid with a purified enzyme. Proc. Natl. Acad. Sci. USA
**1965**, 54, 919–927. [Google Scholar] [CrossRef] [PubMed] - Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften
**1971**, 58, 465–523. [Google Scholar] [CrossRef] [PubMed] - Tupper, A.S.; Higgs, P.G. Error tresholds for RNA replication in the presence of both point mutations and premature termination errors. J. Theor. Biol.
**2017**, 428, 34–42. [Google Scholar] [CrossRef] [PubMed] - Grey, D.; Hutson, V.; Szathmáry, E. A re-examination of the stochastic corrector model. Proc. R. Soc. Lond. B
**1995**, 262, 29–35. [Google Scholar] - Szathmáry, E.; Demeter, L. Group selection of early replicators and the origin of life. J. Theor. Biol.
**1987**, 128, 463–486. [Google Scholar] [CrossRef] - Matsumura, S.; Kun, A.; Ryckelynck, M.; Coldren, F.; Szilágyi, A.; Jossinet, F.; Rick, C.; Nghe, P.; Szathmáry, E.; Griffiths, A.D. Transient compartmentalization of RNA replicators prevents extinction due to parasites. Science
**2016**, 354, 1293–1296. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bansho, Y.; Furubayashi, T.; Ichihashi, N.; Yomo, T. Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proc. Natl. Acad. Sci. USA
**2016**, 113, 4045–4050. [Google Scholar] [CrossRef] - Blokhuis, A.; Nghe, P.; Peliti, L.; Lacoste, D. The generality of transient compartmentalization and its associated error thresholds. BioRxiv
**2019**. submitted. [Google Scholar] - Blokhuis, A.; Lacoste, D.; Nghe, P.; Peliti, L. Selection dynamics in transient compartmentalization. Phys. Rev. Lett.
**2018**, 120, 158101. [Google Scholar] [CrossRef] - Tkachenko, A.V.; Maslov, S. Spontaneous emergence of autocatalytic information-coding polymers. J. Chem. Phys.
**2015**, 143, 045102. [Google Scholar] [CrossRef] - Geyrhofer, L.; Brenner, N. Coexistence and cooperation in structured habitats. bioRxiv
**2018**, 1–23. [Google Scholar] [CrossRef] - Baaske, P.; Weinert, F.M.; Duhr, S.; Lemke, K.H.; Russell, M.J.; Braun, D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl. Acad. Sci. USA
**2007**, 104, 9346–9351. [Google Scholar] [CrossRef][Green Version] - Zadorin, A.S.; Rondelez, Y. Selection strategies for randomly partitioned genetic replicators. Phys. Rev. E
**2019**, 99, 062416. [Google Scholar] [CrossRef] [PubMed][Green Version] - Takeuchi, N.; Hogeweg, P. Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life. Phys. Life Rev.
**2012**, 9, 219–263. [Google Scholar] [CrossRef] [PubMed][Green Version] - Furubayashi, T.; Ichihashi, N. Sustainability of a compartmentalized host-parasite replicator system under periodic washout-mixing cycles. Life
**2018**, 8, 3. [Google Scholar] [CrossRef] - Blokhuis, A.; Lacoste, D.; Gaspard, P. Reaction Kinetics in open reactors and serial transfers between closed reactors. J. Chem. Phys.
**2018**, 148, 144902. [Google Scholar] [CrossRef] - Fujii, T.; Rondelez, Y. Prey Molecular Ecosystems. ACS Nano
**2013**, 7, 27–34. [Google Scholar] [CrossRef] - Strogatz, S.H. Nonlinear Dynamics and Chaos; Perseus Books Publishing: New York, NY, USA, 1994. [Google Scholar]
- Kaneko, K.; Yomo, T. On a kinetic origin of heredity: Minority control in a replicating system with mutually catalytic molecules. J. Theor. Biol.
**2002**, 214, 563–576. [Google Scholar] [CrossRef] - Nghe, P.; Hordijk, W.; Kauffman, S.A.; Walker, S.I.; Schmidt, F.J.; Kemble, H.; Yeates, J.A.; Lehman, N. Prebiotic network evolution: Six key parameters. Mol. Biosyst.
**2015**, 11, 3206–3217. [Google Scholar] [CrossRef] - Furubayashi, T.; Ueda, K.; Bansho, Y.; Motooka, D.; Nakamura, S.; Ichihashi, N. Evolutionary arms-races between host and parasitic RNA replicators in an artificial cell-like system. bioRxiv
**2019**, 728659. [Google Scholar] [CrossRef] - Goldenfeld, N.; Woese, C. Life is physics: Evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys.
**2011**, 2, 375–399. [Google Scholar] [CrossRef] - Eigen, M.; Schuster, P. The Hypercycle. Naturwissenschaften
**1978**, 65, 7–41. [Google Scholar] [CrossRef] - Lancet, D.; Zidovetzki, R.; Markovitch, O. Systems protobiology: origin of life in lipid catalytic networks. J. R. Soc. Interface
**2018**, 15, 20180159. [Google Scholar] [CrossRef] [PubMed] - Rao, R.; Esposito, M. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys. Rev. X
**2016**, 6, 041064. [Google Scholar] [CrossRef] - Polettini, M.; Esposito, M. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. J. Chem. Phys.
**2014**, 141, 024117. [Google Scholar] [CrossRef] - Kamimura, A.; Matsubara, Y.J.; Kaneko, K.; Takeuchi, N. Horizontal transfer between loose compartments stabilizes replication of fragmented ribozymes. PLoS Comput. Biol.
**2019**, 15, e1007094. [Google Scholar] [CrossRef] - Yoshiyama, T.; Ichii, T.; Yomo, T.; Ichihashi, N. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci. Rep.
**2018**, 8, 11867. [Google Scholar] [CrossRef][Green Version] - Beneyton, T.; Krafft, D.; Bednarz, C.; Kleineberg, C.; Woelfer, C.; Ivanov, I.; Vidaković-Koch, T.; Sundmacher, K.; Baret, J.C. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions. Nat. Commun.
**2018**, 9, 2391. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Transient compartmentalization at fixed average number of molecules per compartment, and (

**b**) with a variable average number of molecules. In (

**a**), the cycle splits into steps of inoculation, with a fixed average number of molecules per compartment $\lambda $, maturation and then pooling, while in (

**b**) the inoculation step is done with a variable average number of molecules per compartment $\lambda \left(t\right)$ because the cycle contains in addition a dilution step. The green and red circles represent the replicators and their parasites, respectively.

**Figure 2.**Contour map of the fraction x of replicators as a function of $(\lambda ,\Lambda )$, for a carrying capacity $K=100$, where $\lambda $ denotes the average number of molecules per compartment and $\Lambda $ the relative growth rates of the parasites with respect to the host. The dotted line is the contour of $x=1$, which marks the border of the pure replicators phase (the red region). Above this line, a coexistence region exists between the two species at a fraction of replicators indicated by the color scale.

**Figure 3.**Oscillations in the average amount of self-replicating and parasite molecules per compartment as a function of the round number for $d=19$, $K=60$, and $\Lambda =5$. (

**a**) Average population size $\u2329\overline{m}\u232a$ of replicators and $\u2329\overline{n}-\overline{m}\u232a$ of parasites after the growth step plotted vs. round number. (

**b**) Fraction x of replicators and average $\lambda $ of inoculum size. Notice that the oscillations rebound close to the line $\lambda =1$.

**Figure 4.**Oscillations in the average amount of self-replicating and parasites molecules per compartment as a function of the round number for $K=60$ and $\Lambda \gg 1$. (

**a**) Steady oscillations at $d=18$ (unstable spirals), and (

**b**) damped oscillations at $d=22$ (stable spirals). Note the beating pattern in the oscillations visible in (

**a**).

**Figure 5.**(

**a**) Phase diagram in the plane (K, d) in the limit $\Lambda \gg 1$ containing three regions: unstable spirals (with an inset representing steady oscillations), stable spirals (with an inset representing damped oscillations) and stable node (with an inset representing a curve with no oscillations); and (

**b**) evolution of the fixed point coordinates (${x}^{*}$, ${\lambda}^{*}$) as a function of K, on the Hopf bifurcation (solid line) and on the transition line between the stable node and stable spirals (dashed line).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Laurent, G.; Peliti, L.; Lacoste, D. Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection. *Life* **2019**, *9*, 78.
https://doi.org/10.3390/life9040078

**AMA Style**

Laurent G, Peliti L, Lacoste D. Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection. *Life*. 2019; 9(4):78.
https://doi.org/10.3390/life9040078

**Chicago/Turabian Style**

Laurent, Gabin, Luca Peliti, and David Lacoste. 2019. "Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection" *Life* 9, no. 4: 78.
https://doi.org/10.3390/life9040078