Antioxidant Potential of Natural Extract of Ginkgo biloba L. in Relation to Chorioallantoic Membrane (CAM) Vessels of Chicken Embryo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extract
2.2. Sample Preparation for HPLC
2.3. Conditions of HPLC-DAD Analyses
Quantitative Determination of Flavonoid Content
2.4. Determination of Antioxidant Activity
2.4.1. DPPH Assay
2.4.2. Ferric Reducing Antioxidant Power
2.5. CAM Model Preparation
2.6. Statistical Analysis
3. Results
3.1. Antioxidant Activity Using FRAP and DPPH Assays
3.2. Determination of Flavonoids Using HPLC-DAD
3.3. Vasoactivity of CAM Blood Vessels After Administration of GB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strømgaard, K.; Nakanishi, K. Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 2004, 43, 1640–1658. [Google Scholar] [CrossRef] [PubMed]
- Eisvand, F.; Razavi, B.M.; Hosseinzadeh, H. The effects of Ginkgo biloba on metabolic syndrome: A review. Phytother. Res. 2020, 34, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Bhat, M.; Basu, S. Plants and their active compounds: Natural molecules to target angiogenesis. Angiogenesis 2016, 19, 287–295. [Google Scholar] [CrossRef]
- Silva, H.; Martins, F.G. Cardiovascular activity of Ginkgo biloba—An insight from healthy subjects. Biology 2022, 12, 15. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastav, S.; Castellani, R.J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019, 16, 666–674. [Google Scholar] [CrossRef]
- Asiwe, J.N.; Ovuakporaye, S.I.; Ben-Azu, B.; Dauda, J.U.; Igben, V.J.O.; Ahama, E.E.; Igbokwe, V.U. Inhibition of oxido-inflammatory and apoptotic pathway is involved in the protective effect of Ginkgo biloba supplement in cyclosporine-A induced vascular dysfunction in Wistar rat. Pharmacol. Res.-Mod. Chin. Med. 2023, 7, 100252. [Google Scholar] [CrossRef]
- Bellairs, R.; Osmond, M. The Atlas of Chick Development; Elsevier Academic Press: San Diego, CA, USA, 2005; pp. 115–117. ISBN 0-12-084791-4. [Google Scholar]
- Ahmed, T.A.; Cordeiro, C.M.; Elebute, O.; Hincke, M.T. Proteomic analysis of chicken chorioallantoic membrane (CAM) during embryonic development provides functional insight. BioMed. Res. Int. 2022, 1, 7813921. [Google Scholar] [CrossRef]
- Romanoff, A.L. The Avian Embryo: Structural and Functional Development; Macmillan Co.: New York, NY, USA.; London, UK, 1960. Available online: https://ntrs.nasa.gov/citations/20050186859 (accessed on 12 May 2025).
- Papoutsi, M.; Tomarev, S.I.; Eichmann, A.; Pröls, F.; Christ, B.; Wilting, J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev. Dyn. 2001, 222, 238–251. [Google Scholar] [CrossRef]
- Montague, I.P. Regulation of Vascular Growth in the Chorioallantoic Membrane of Japanese Quail Eggs. S.l.: Research Symposium, I. 2004. Available online: https://ntrs.nasa.gov/api/citations/20050186794/downloads/20050186794.pdf (accessed on 12 May 2025).
- Nowak-Sliwinska, P.; Storto, M.; Cataudella, T.; Ballini, J.P.; Gatz, R.; Giorgio, M.; Van Den Bergh, H.; Plyte, S.; Wagnières, G. Angiogenesis inhibition by the maleimide-based small molecule GNX-686. Microvasc. Res. 2014, 83, 105–110. [Google Scholar] [CrossRef]
- Kue, C.S.; Tan, K.Y.; LaM, M.L.; Lee, H.B. Chick embryo chorioallantoic membrane (CAM): An alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp. Anim. 2015, 64, 129–138. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Zheng, W.; Zeng, Z.; Fan, L.; Zhao, Y.; Huang, Y.; Cao, S.; Yu, S.; Shen, L. Molecular Mechanisms of Plant Extracts in Protecting Aging Blood Vessels. Nutrients 2024, 16, 2357. [Google Scholar] [CrossRef] [PubMed]
- Kundeková, B.; Máčajová, M.; Met, M.; Čavarga, I.; Bilčík, B. Chorioallantoic membrane models of various avian species: Differences and applications. Biology 2021, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Suchý, V.; Daňková, L.; Dvorská, M.; Hrazdilová, E.; Kubínová, R.; Smejkal, K.; Špačková, V.; Zemlička, M. Praktická Cvičení z Farmakognozie; Veterinární a farmaceutická univerzita Brno: Brno, Czech Republic, 2013; pp. 1–257. ISBN 978-80-7305-659-9. Available online: https://munispace.muni.cz/library/catalog/book/1930 (accessed on 7 April 2025).
- Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH• assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from Turkey flora. Food Chem. Toxicol. 2011, 49, 2914–2920. [Google Scholar] [CrossRef]
- Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol. 1985, 23, 287–291. [Google Scholar] [CrossRef]
- Lazarovici, P.; Lahiani, A.; Gincberg, G.; Haham, D.; Marcinkiewicz, C.; Lelkes, P.I. Nerve Growth Factor-Induced Angiogenesis: 2. The Quail Chorioallantoic Membrane Assay. In Neurotrophic Factors; Humana Press: New York, NY, USA, 2018; pp. 251–259. [Google Scholar] [CrossRef]
- Hashiguchi, M.; Ohta, Y.; Shimizu, M.; Maruyama, J.; Mochizuki, M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J. Pharm. Health Care Sci. 2015, 111, 1150–1160. [Google Scholar] [CrossRef]
- Di Meo, F.; Cuciniello, R.; Margarucci, S.; Bergamo, P.; Petillo, O.; Peluso, G.; Crispi, S. Ginkgo biloba prevents oxidative stress-induced apoptosis blocking p53 activation in neuroblastoma cells. Antioxidants 2020, 9, 279. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Dahija, S.; Hassan, S.T. Biflavonoids: Important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 2022, 11, 1381. Available online: https://www.mdpi.com/2223-7747/11/10/1381 (accessed on 7 April 2025). [CrossRef]
- Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med. 2019, 9, 15–23. [Google Scholar] [CrossRef]
- Ban, C.; Park, J.B.; Cho, S.; Kim, H.R.; Kim, Y.J.; Bae, H.; Kweon, D.H. Characterization of Ginkgo biloba leaf flavonoids as neuroexocytosis regulators. Molecules 2020, 25, 1829. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, L.J.; Ye, H.Y.; Gao, L.; Hou, W.; Tang, M.; Yang, G.; Zhong, Z.; Yuan, Y.; Peng, A. Isolation and purification of ginkgo flavonol glycosides from Ginkgo biloba leaves by high-speed counter-current chromatography. J. Sep. Sci. 2007, 30, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lou, K.; Wu, G.; Wu, X.; Zhou, X.; Feng, Y.; Zhang, H.; Yu, P. Bioactive metabolites in of Ginkgo biloba leaves: Variations by seasonal, meteorological and soil. Braz. J. Biol. 2020, 80, 790–797. [Google Scholar] [CrossRef]
- Ražná, K.; Sawinska, Z.; Ivanišová, E.; Vukovic, N.; Terentjeva, M.; Stričík, M.; Kačániová, M. Properties of Ginkgo biloba L.: Antioxidant characterization, antimicrobial activities, and genomic microRNA-based marker fingerprints. Int. J. Mol. Sci. 2020, 21, 3087. [Google Scholar] [CrossRef]
- Kobus, J.; Flaczyk, E.; Siger, A.; Nogala-Kałucka, M.; Korczak, J.; Pegg, R.B. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur. J. Lipid Sci. Technol. 2009, 111, 1150–1160. [Google Scholar] [CrossRef]
- Zhou, Q.; Mu, K.; Xu, M.; Ma, X.; Ni, Z.; Wang, J.; Xu, L.A. Variation in the concentrations of major secondary metabolites in Ginkgo leaves from different geographical populations. Forests 2017, 8, 266. Available online: https://www.mdpi.com/1999-4907/8/8/266 (accessed on 12 May 2025). [CrossRef]
- Guo, J.; Zhou, X.; Wang, T.; Wang, G.; Cao, F. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. Plant Physiol. Biochem. 2020, 147, 133–140. [Google Scholar] [CrossRef]
- Yang, B.; Kotani, A.; Arai, K.; Kusu, F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal. Sci. 2001, 17, 599–604. [Google Scholar] [CrossRef]
- Pengfei, L.; Tiansheng, D.; Xianglin, H.; Jianguo, W. Antioxidant Properties of Isolated Isorhamnetin from the Sea Buckthorn Marc. Plant Foods Hum. Nutr. 2009, 64, 141–145. [Google Scholar] [CrossRef]
- Moalin, M.; van Strijdonck, G.P.; Beckers, M.; Hagemen, G.J.; Borm, P.J.; Bast, A.; Haenen, G.R. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules 2011, 16, 9636–9650. [Google Scholar] [CrossRef]
- Klomsakul, P.; Aiumsubtub, A.; Chalopagorn, P. Evaluation of antioxidant activities and tyrosinase inhibitory effects of Ginkgo biloba tea extract. Sci. World J. 2022, 1, 4806889. [Google Scholar] [CrossRef]
- McKeage, K.; Lyseng-Williamson, K.A. Ginkgo biloba extract EGb 761® in the symptomatic treatment of mild-to-moderate dementia: A profile of its use. Drugs Ther. Perspect. 2018, 34, 358–366. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commision. European pharmacopoeia 11th edition: Supplement 11.0; European Directorate for the Quality of Medicines & Healthcare: Strasbourg, France, 2022. [Google Scholar]
- Adebayo, O.G.; Aduema, W.; Iwueke, A.V.; Asiwe, J.N.; Onyeleonu, I.; Akpotu, A.E.; Onwuka, F.C. Treatment with Ginkgo biloba supplement modulates oxidative disturbances, inflammation and vascular functions in oxygen deprived hypothyroid mice: Involvement of endothelin-1/NO signaling pathways. J. Food Biochem. 2022, 46, e14477. [Google Scholar] [CrossRef]
- Biernacka, P.; Adamska, I.; Felisiak, K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds—A Review of the Recent Literature and Patents. Molecules 2023, 28, 3993. [Google Scholar] [CrossRef] [PubMed]
- Demirel, S.; Yilmaz, D.A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review. Lipids Health Dis. 2024, 20, 23. [Google Scholar] [CrossRef]
Time Taken for Manifestation of Irritation Effect | Score | ||
---|---|---|---|
Hyperemia | Hemorrhage | Coagulation | |
<0.5 min | 5 | 7 | 9 |
0.5–2 min | 3 | 5 | 7 |
2–5 min | 1 | 3 | 5 |
Cumulative Score | Irritation Potential |
---|---|
<1.0 | Negligible |
1.0–4.9 | Slight |
5.0–8.9 | Moderate |
9.0–21.0 | Strong |
Ethanolic GB Extract | 1 FRAP = 100 µmol/L Fe2+ | DPPH (% Inhibition) |
---|---|---|
0.25% | 2.186 ± 0.340 | 25.95 |
0.5% | 2.530 ± 0.233 | 41.14 |
1.0% | 2.953 ± 0.185 | 62.28 |
2.0% | 3.314 ± 0.268 | 76.58 |
Rutin | Isoquercetin | Kaempferol-3-glucoside | Isorhamnetin-3-glucoside | (+)-Catechin |
---|---|---|---|---|
965.645 + 93.113 | 161.735 + 60.895 | 336.039 + 20.798 | 124.915 + 16.456 | 149.010 + 32.452 |
Quercetin | Kaempferol | Isorhamnetin | ||
516.696 + 22.222 | 769.262 + 17.825 | 1063.721 + 23.033 |
Concentration | Hyperemia | Hemorrhage | Coagulation | Cumulative Score | Irritation Potential | |
---|---|---|---|---|---|---|
Negative control | Saline solution | 0 | 0 | 0 | 0 | Negligible |
Positive control | Ethanol 30% | 5 | 0 | 0 | 5 | Moderatet |
Ginkgo extract | 1% | 3.4 | 3.8 | 2 | 9.2 | Strong |
5% | 3 | 5.25 | 2.5 | 10.75 | Strong | |
10% | 2.83 | 3.5 | 0.83 | 7.16 | Moderate | |
15% | 3 | 7 | 3.75 | 13.75 | Strong | |
20% | 2.25 | 3.75 | 2.5 | 8.5 | Moderate | |
30% | 3 | 1.75 | 1.25 | 6 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bačkorová, M.; Petruľová, V.; Petrovová, E. Antioxidant Potential of Natural Extract of Ginkgo biloba L. in Relation to Chorioallantoic Membrane (CAM) Vessels of Chicken Embryo. Life 2025, 15, 827. https://doi.org/10.3390/life15050827
Bačkorová M, Petruľová V, Petrovová E. Antioxidant Potential of Natural Extract of Ginkgo biloba L. in Relation to Chorioallantoic Membrane (CAM) Vessels of Chicken Embryo. Life. 2025; 15(5):827. https://doi.org/10.3390/life15050827
Chicago/Turabian StyleBačkorová, Miriam, Veronika Petruľová, and Eva Petrovová. 2025. "Antioxidant Potential of Natural Extract of Ginkgo biloba L. in Relation to Chorioallantoic Membrane (CAM) Vessels of Chicken Embryo" Life 15, no. 5: 827. https://doi.org/10.3390/life15050827
APA StyleBačkorová, M., Petruľová, V., & Petrovová, E. (2025). Antioxidant Potential of Natural Extract of Ginkgo biloba L. in Relation to Chorioallantoic Membrane (CAM) Vessels of Chicken Embryo. Life, 15(5), 827. https://doi.org/10.3390/life15050827