A New Perspective on Overfeeding in the Intensive Care Unit (ICU): Challenges, Dangers and Prevention Methods
Abstract
:1. Introduction
2. Protein Pathway and Metabolic Changes
3. Consequences of Overfeeding
4. Strategies for Prevention of Overfeeding in Critical Care
4.1. Individualized Nutrition Therapy
4.2. Monitoring and Assessment Tools
4.3. Phased Nutritional Interventions
4.4. Complications and Mitigations
4.5. Emerging Evidence
5. Nutritional Data After ICU Discharge
6. Education and Training
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALF | Acute Liver Failure |
ASPEN | American Society for Parenteral and Enteral Nutrition; |
BCAAs | Branched-Chain Amino Acids |
BUNDOMV | Blood Urea NitrogenNumber of Days of Mechanical Ventilation |
EN | Enteral Nutrition |
ESPEN | European Society for Clinical Nutrition and Metabolism |
mNutric | Validated tool to assess malnutrition risk in ICU patients (incorporates APACHE/SOFA scores). |
REE | Resting energy expenditure |
MODS | Multiple Organ Dysfunction Syndrome |
mTOR | Mechanistic target of rapamycin |
PICS | Post-Intensive Care Syndrome |
PN | Parenteral Nutrition |
RQ | Respiratory Quotient—CO2 produced/O2 consumed; RQ > 1 indicates overfeeding |
SPICES | Framework for post-ICU nutrition: Swallowing, Pancreatic, Inflammation, Coagulopathy, Electrolytes, Sarcopenia. |
SPPB | Short Physical Performance Battery |
QoL | Quality of Life |
References
- van Zanten, A.R.H.; De Waele, E.; Wischmeyer, P.E. Nutrition therapy and critical illness: Practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit. Care 2019, 23, 368. [Google Scholar] [CrossRef]
- Needham, D.M.; Davidson, J.; Cohen, H.; Hopkins, R.O.; Weinert, C.; Wunsch, H.; Zawistowski, C.; Bemis-Dougherty, A.; Berney, S.C.; Bienvenu, O.J.; et al. Improving long-term outcomes after discharge from intensive care unit: Report from a stakeholders’ conference. Crit. Care Med. 2012, 40, 502–509. [Google Scholar] [CrossRef]
- Compher, C.; Bingham, A.L.; McCall, M.; Patel, J.; Rice, T.W.; Braunschweig, C.; McKeever, L. Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2022, 46, 12–41. [Google Scholar] [CrossRef]
- Compher, C.; Chittams, J.; Sammarco, T.; Nicolo, M.; Heyland, D.K. Greater Protein and Energy Intake May Be Associated With Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study*. Crit. Care Med. 2017, 45, 156–163. [Google Scholar] [CrossRef]
- Thawkar, V.N.; Taksande, K. Navigating Nutritional Strategies: Permissive Underfeeding in Critically Ill Patients. Cureus 2024, 16, e58083. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef]
- Hill, A.; Heyland, D.K.; Reyes, L.A.O.; Laaf, E.; Wendt, S.; Elke, G.; Stoppe, C. Combination of enteral and parenteral nutrition in the acute phase of critical illness: An updated systematic review and meta-analysis. J. Parenter. Enter. Nutr. 2022, 46, 395–410. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591. [Google Scholar] [CrossRef]
- Casaer, M.P.; Wilmer, A.; Hermans, G.; Wouters, P.J.; Mesotten, D.; Berghe, G.V.D. Role of Disease and Macronutrient Dose in the Randomized Controlled EPaNIC Trial. Am. J. Respir. Crit. Care Med. 2013, 187, 247–255. [Google Scholar] [CrossRef]
- Dharel, N.; Bajaj, J.S. Definition and Nomenclature of Hepatic Encephalopathy. J. Clin. Exp. Hepatol. 2015, 5, S37–S41. [Google Scholar] [CrossRef]
- Whitney, L.D.; Caruso, L.J.; White, P.; Layon, A.J. Nutrition in the Neurointensive Care Unit. In Textbook of Neurointensive Care; Springer: London, UK, 2013; pp. 391–407. [Google Scholar]
- Weichhart, T.; Hengstschläger, M.; Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 2015, 15, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, C.A.; Suliman, H.B. Redox regulation of mitochondrial biogenesis. Free Radic. Biol. Med. 2012, 53, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef]
- Martindale, R.G.; Heyland, D.K.; Rugeles, S.J.; Wernerman, J.; Weijs, P.J.M.; Patel, J.J.; McClave, S.A. Protein Kinetics and Metabolic Effects Related to Disease States in the Intensive Care Unit. Nutr. Clin. Pract. 2017, 32, 21S–29S. [Google Scholar] [CrossRef]
- Patel, J.J.; Martindale, R.G.; McClave, S.A. Controversies Surrounding Critical Care Nutrition: An Appraisal of Permissive Under-feeding, Protein, and Outcomes. J. Parenter. Enter. Nutr. 2018, 42, 508–515. [Google Scholar] [CrossRef]
- Vanhorebeek, I.; Gunst, J.; Derde, S.; Derese, I.; Boussemaere, M.; Güiza, F.; Martinet, W.; Timmermans, J.P.; D’Hoore, A.; Wouters, P.J.; et al. Insufficient Activation of Autophagy Allows Cellular Damage to Accumulate in Critically Ill Patients. J. Clin. Endocrinol. Metab. 2011, 96, E633–E645. [Google Scholar] [CrossRef]
- McCowen, K.C.; Malhotra, A.; Bistrian, B.R. Stress-Induced Hyperglycemia. Crit. Care Clin. 2001, 17, 107–124. [Google Scholar] [CrossRef]
- Robinson, L.E.; van Soeren, M.H. Insulin Resistance and Hyperglycemia in Critical Illness. AACN Clin. Issues Adv. Pract. Acute Crit. Care 2004, 15, 45–62. [Google Scholar] [CrossRef]
- Patel, J.J.; Hurt, R.T.; McClave, S.A.; Martindale, R.G. Critical Care Nutrition. Crit. Care Clin. 2017, 33, 397–412. [Google Scholar] [CrossRef]
- Preiser, J.-C.; Ichai, C.; Orban, J.-C.; Groeneveld, A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Kondrup, J.; Wiis, J.; Claudius, C.; Pedersen, U.G.; Hein-Rasmussen, R.; Bjerregaard, M.R.; Steensen, M.; Jensen, T.H.; Lange, T.; et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: The single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensiv. Care Med. 2017, 43, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Energy-Dense versus Routine Enteral Nutrition in the Critically Ill. N. Engl. J. Med. 2018, 379, 1823–1834. [CrossRef]
- Knopp, J.L.; Chase, J.G.; Shaw, G.M. Increased insulin resistance in intensive care: Longitudinal retrospective analysis of glycaemic control patients in a New Zealand ICU. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211012144. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Chao, W.-C.; Wu, C.-L.; Chan, M.-C. Hypoglycemia and hospital mortality in critically ill patients. Sci. Rep. 2025, 15, 2642. [Google Scholar] [CrossRef]
- Harvey, S.E.; Parrott, F.; Harrison, D.A.; Bear, D.E.; Segaran, E.; Beale, R.; Bellingan, G.; Leonard, R.; Mythen, M.G.; Rowan, K.M.; et al. Trial of the Route of Early Nutritional Support in Critically Ill Adults. N. Engl. J. Med. 2014, 371, 1673–1684. [Google Scholar] [CrossRef]
- Qi, F.; Huang, G.; Li, H.; Zhao, X.; Liu, J. Correlation analysis of norepinephrine dose on enteral nutrition tolerance and prognosis in patients with septic shock. BMC Infect. Dis. 2023, 23, 386. [Google Scholar] [CrossRef]
- Merriweather, J.L.; Griffith, D.M.; Walsh, T.S. Appetite during the recovery phase of critical illness: A cohort study. Eur. J. Clin. Nutr. 2018, 72, 986–992. [Google Scholar] [CrossRef]
- Braunschweig, C.L.; Freels, S.; Sheean, P.M.; Peterson, S.J.; Perez, S.G.; McKeever, L.; Lateef, O.; Gurka, D.; Fantuzzi, G. Role of timing and dose of energy received in patients with acute lung injury on mortality in the Intensive Nutrition in Acute Lung Injury Trial (INTACT): A post hoc analysis. Am. J. Clin. Nutr. 2017, 105, 411–416. [Google Scholar] [CrossRef]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef]
- Weijs, P.J.M.; Stapel, S.N.; de Groot, S.D.W.; Driessen, R.H.; de Jong, E.; Girbes, A.R.J.; van Schijndel, R.J.M.S.; Beishuizen, A. Optimal Protein and Energy Nutrition Decreases Mortality in Mechanically Ventilated, Critically Ill Patients. J. Parenter. Enter. Nutr. 2012, 36, 60–68. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Uehara, M.; Plank, L.D.; Hill, G.L. Components of energy expenditure in patients with severe sepsis and major trauma. Crit. Care Med. 1999, 27, 1295–1302. [Google Scholar] [CrossRef]
- Elke, G.; Hartl, W.H.; Kreymann, K.G.; Adolph, M.; Felbinger, T.W.; Graf, T.; de Heer, G.; Heller, A.R.; Kampa, U.; Mayer, K.; et al. Clinical Nutrition in Critical Care Medicine—Guideline of the German Society for Nutritional Medicine (DGEM). Clin. Nutr. ESPEN 2019, 33, 220–275. [Google Scholar]
- Sundström Rehal, M.; Tatucu-Babet, O.A.; Oosterveld, T. Indirect calorimetry: Should it be part of routine care or only used in specific situations? Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 154–159. [Google Scholar] [CrossRef]
- Singer, P.; Anbar, R.; Cohen, J.; Shapiro, H.; Shalita-Chesner, M.; Lev, S.; Grozovski, E.; Theilla, M.; Frishman, S.; Madar, Z. The tight calorie control study (TICACOS): A prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensiv. Care Med. 2011, 37, 601–609. [Google Scholar] [CrossRef]
- Bear, D.E.; Wandrag, L.; Merriweather, J.L.; Connolly, B.; Hart, N.; Grocott, M.P.W. The role of nutritional support in the physical and functional recovery of critically ill patients: A narrative review. Crit. Care 2017, 21, 226. [Google Scholar] [CrossRef]
- Fraipont, V.; Preiser, J. Energy Estimation and Measurement in Critically Ill Patients. J. Parenter. Enter. Nutr. 2013, 37, 705–713. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Esmailzadeh, N.; Wilkens Knudsen, A.; Espersen, K.; Hartvig Jensen, T.; Wiis, J.; Perner, A.; Kondrup, J. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012, 31, 462–468. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Ma, X.; Pei, B.; Wu, N.; Wang, C.; Yu, Y.; Yang, W. Current research and future prospects of immunonutrition in gastrointestinal malignancies. Front. Immunol. 2024, 15, 1420415. [Google Scholar] [CrossRef] [PubMed]
- Koekkoek, K.W.; Berger, M.M. An update on essential micronutrients in critical illness. Curr. Opin. Crit. Care 2023, 29, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Vankrunkelsven, W.; Gunst, J.; Amrein, K.; Bear, D.E. Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: The VITA-TRACE survey. Clin. Nutr. 2021, 40, 590–599. [Google Scholar] [CrossRef]
- Collie, J.T.; Greaves, R.F.; Jones, O.A.; Lam, Q.; Eastwood, G.M.; Bellomo, R. Vitamin B1 in critically ill patients: Needs and challenges. Clin. Chem. Lab. Med. 2017, 55, 1652–1668. [Google Scholar] [CrossRef]
- Fowler, A.A.; Truwit, J.D.; Hite, R.D.; Morris, P.E.; Dewilde, C.; Priday, A.; Fisher, B.; Thacker, L.R.; Natarajan, R.; Brophy, D.F.; et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure. JAMA 2019, 322, 1261–1270. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Heighes, P.T.; Bellomo, R.; Chesher, D.; Caterson, I.D.; Reade, M.C.; Harrigan, P.W.J. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: A randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir. Med. 2015, 3, 943–952. [Google Scholar] [CrossRef]
- Marik, P.E.; Bedigian, M.K. Refeeding Hypophosphatemia in Critically Ill Patients in an Intensive Care Unit. Arch. Surg. 1996, 131, 1043–1047. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Taniguchi, E.; Sata, M. Effects of Oral Branched-Chain Amino Acids on Hepatic Encephalopathy and Outcome in Patients With Liver Cirrhosis. Nutr. Clin. Pract. 2013, 28, 580–588. [Google Scholar] [CrossRef]
- Holecek, M. Branched-chain amino acids and ammonia metabolism in liver disease: Therapeutic implications. Nutrition 2013, 29, 1186–1191. [Google Scholar] [CrossRef]
- Drover, J.W.; Dhaliwal, R.; Weitzel, L.; Wischmeyer, P.E.; Ochoa, J.B.; Heyland, D.K. Perioperative Use of Arginine-supplemented Diets: A Systematic Review of the Evidence. J. Am. Coll. Surg. 2011, 212, 385–399e1. [Google Scholar] [CrossRef]
- Moore, F.A.; Phillips, S.M.; McClain, C.J.; Patel, J.J.; Martindale, R.G. Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutr. Clin. Pract. 2017, 32, 121S–127S. [Google Scholar] [CrossRef]
- Heyland, D.; Muscedere, J.; Wischmeyer, P.E.; Cook, D.; Jones, G.; Albert, M.; Elke, G.; Berger, M.M.; Day, G.A.; Canadian Critical Care Trials Group. A Randomized Trial of Glutamine and Antioxidants in Critically Ill Patients. N. Engl. J. Med. 2013, 368, 1489–1497. [Google Scholar] [CrossRef]
- Stehle, P.; Ellger, B.; Kojic, D.; Feuersenger, A.; Schneid, C.; Stover, J.; Scheiner, D.; Westphal, M. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: A systematic evaluation of randomised controlled trials. Clin. Nutr. ESPEN 2017, 17, 75–85. [Google Scholar] [CrossRef]
- Reignier, J.; Plantefeve, G.; Mira, J.P.; Argaud, L.; Asfar, P.; Aissaoui, N.; Badie, J.; Botoc, N.V.; Brisard, L.; Bui, H.N.; et al. Low versus standard calorie and protein feeding in ven-tilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group trial (NUTRIREA-3). Lancet Respir. Med. 2023, 11, 602–612. [Google Scholar] [CrossRef]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. N. Engl. J. Med. 2011, 11, 506–517. [Google Scholar] [CrossRef]
- Liebau, F.; Wernerman, J.; van Loon, L.J.; Rooyackers, O. Effect of initiating enteral protein feeding on whole-body protein turnover in critically ill patients. Am. J. Clin. Nutr. 2015, 101, 549–557. [Google Scholar] [CrossRef]
- Gazzaneo, M.C.; Suryawan, A.; Orellana, R.A.; Torrazza, R.M.; El-Kadi, S.W.; Wilson, F.A.; Kimball, S.R.; Srivastava, N.; Nguyen, H.V.; Fiorotto, M.L.; et al. Intermittent Bolus Feeding Has a Greater Stimulatory Effect on Protein Synthesis in Skeletal Muscle Than Continuous Feeding in Neonatal Pigs. J. Nutr. 2011, 141, 2152–2158. [Google Scholar] [CrossRef]
- Nicolo, M.; Heyland, D.K.; Chittams, J.; Sammarco, T.; Compher, C. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population. J. Parenter. Enter. Nutr. 2016, 40, 45–51. [Google Scholar] [CrossRef]
- Piton, G.; Le Gouge, A.; Brulé, N.; Cypriani, B.; Lacherade, J.-C.; Nseir, S.; Mira, J.-P.; Mercier, E.; Sirodot, M.; Rigaud, J.-P.; et al. Impact of the route of nutrition on gut mucosa in ventilated adults with shock: An ancillary of the NUTRIREA-2 trial. Intensiv. Care Med. 2019, 45, 948–956. [Google Scholar] [CrossRef]
- Stawicki, S.P.; Evans, D.C.; Forbes, R.; Jones, C.; Cotterman, R.; Njoku, C.; Thongrong, C.; Tulman, D.; Bergese, S.D.; Thomas, S.; et al. Continuous versus bolus tube feeds: Does the modality affect glycemic variability, tube feeding volume, caloric intake, or insulin utilization? Int. J. Crit. Illn. Inj. Sci. 2016, 6, 9–15. [Google Scholar] [CrossRef]
- van Beusekom, I.; Bakhshi-Raiez, F.; de Keizer, N.F.; van der Schaaf, M.; Busschers, W.B.; Dongelmans, D.A. Healthcare costs of ICU survivors are higher before and after ICU admission compared to a population based control group: A descriptive study combining healthcare insurance data and data from a Dutch national quality registry. J. Crit. Care 2018, 44, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Fadeur, M.; Preiser, J.-C.; Verbrugge, A.-M.; Misset, B.; Rousseau, A.-F. Oral Nutrition during and after Critical Illness: SPICES for Quality of Care! Nutrients 2020, 12, 3509. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.J.; Tsai, A.A.; Scala, C.M.; Sowa, D.C.; Sheean, P.M.; Braunschweig, C.L. Adequacy of Oral Intake in Critically Ill Patients 1 Week after Extubation. J. Am. Diet. Assoc. 2010, 110, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Moisey, L.L.; Pikul, J.; Keller, H.; Yeung, C.Y.E.; Rahman, A.; Heyland, D.K.; Mourtzakis, M. Adequacy of Protein and Energy Intake in Critically Ill Adults Following Liberation From Mechanical Ventilation Is Dependent on Route of Nutrition Delivery. Nutr. Clin. Pract. 2021, 36, 201–212. [Google Scholar] [CrossRef]
- Haines, K.J.P.; Hibbert, E.B.; Leggett, N.D.; Boehm, L.M.P.; Hall, T.D.; Bakhru, R.N.; Bastin, A.J.M.; Butcher, B.W.; Eaton, T.L.M.; Harris, W.R.; et al. Transitions of Care After Critical Illness—Challenges to Recovery and Adaptive Problem Solving*. Crit. Care Med. 2021, 49, 1923–1931. [Google Scholar] [CrossRef]
- Wei, X.; Day, A.G.; Ouellette-Kuntz, H.; Heyland, D.K. The Association Between Nutritional Adequacy and Long-Term Outcomes in Critically Ill Patients Requiring Prolonged Mechanical Ventilation. Crit Care Med. 2015, 43, 1569–1579. [Google Scholar] [CrossRef]
- Needham, D.M.; Dinglas, V.D.; Morris, P.E.; Jackson, J.C.; Hough, C.L.; Mendez-Tellez, P.A.; Wozniak, A.W.; Colantuoni, E.; Ely, E.W.; Rice, T.W.; et al. Physical and Cognitive Performance of Patients with Acute Lung Injury 1 Year after Initial Trophic versus Full Enteral Feeding. EDEN Trial Follow-up. Am. J. Respir. Crit. Care Med. 2013, 188, 567–576. [Google Scholar] [CrossRef]
- Park, Y.E.; Lee, H.J.; Hong, S.P.; Cheon, J.H.; Kim, T.I.; Kim, W.H.; Park, S.J. Impact and outcomes of nutritional support team intervention in patients with gastrointestinal disease in the intensive care unit. Gastroenterology 2017, 152, S417. [Google Scholar] [CrossRef]
- Moradi Moghaddam, O.; Niakan Lahiji, M.; Yazdan Panah, L.; Talebi-Taher, M.; Rajabi, A.; Mirhosseini, S.F. Relationship between Mini Nutritional Assessment Score and Infection in Critical Care Patients. Med. J. Islam. Repub. Iran 2022, 36, 91. [Google Scholar] [CrossRef]
- van Zanten, A.R.H. Should We Increase Protein Delivery During Critical Illness? J. Parenter. Enter. Nutr. 2016, 40, 756–762. [Google Scholar] [CrossRef]
- Clavé, P.; Arreola, V.; Romea, M.; Medina, L.; Palomera, E.; Serra-Prat, M. Accuracy of the volume-viscosity swallow test for clinical screening of oropharyngeal dysphagia and aspiration. Clin. Nutr. 2008, 27, 806–815. [Google Scholar] [CrossRef] [PubMed]
MST “Malnutrition Screening Tool” | MUST Malnutrition Universal Screening Tool | mNUTRIC Modified NUTrition Risk in the Critically Ill Score | Nutrition Risk Score 2002 |
---|---|---|---|
Factors in: 1. Losing weight without trying, and how much 2. Decreased appetite 3. Appetite score | Parameters: 1. BMI 2. Weight lost without trying last 3–6 months 3. Acute illness | Calculating risk on a series of factors: 1. Age 2. Comorbidities 3. APACHE II score (Acute Physiology and Chronic Health Evaluation) 4. SOFA score (Sequential Organ Failure Assessment_ 5. Days of admittance in the facility before ICU 6. IL6 (interleukin-6) * | Risk calculated by factoring: 1. Weight loss 2. Low BMI 3. Low quantities of nutritional support 4. Disease severity |
Requires patient cooperation, not fit for sedated patients | It does not take into consideration body composition | It does not factor in BMI as a primary parameter; it does not need patient cooperation | It does not take into consideration body composition, being based on BMI |
It does not take into consideration age or practical aspects | Low specificity for critical patients | They are commonly used in practice for the target population at risk for malnutrition (intubated/sedated) | They are commonly used in practice for the target population at risk for malnutrition (intubated/sedated). |
Rated as “good/strong” | Rated less reliable than mNUTRIC score | Supported by ASPEN/SSCM guidelines (2021) | Supported by ASPEN/SSCM guidelines (2021) |
Nutrient | Acute Phase < 3d (2023) | Post-Acute Phase > 7d (2023) | Reasoning |
---|---|---|---|
Energy (Calories) | 20–25 kcal/kg/day (or hypocaloric feeding in the first 7–10 days) | 25–30 kcal/kg/day | Acute phase: Avoid overfeeding; hypocaloric feeding reduces complications like hyperglycemia and liver stress. Increase caloric intake to support recovery and rehabilitation. |
Protein | 1.2–2.0 g/kg/day (up to 2.5 g/kg/day for burns or severe trauma) | 1.5–2.5 g/kg/day (up to 2.5–3.0 g/kg/day for severe muscle wasting) | Higher protein intake supports muscle repair, wound healing, and immune function. |
Carbohydrates | 50–60% of total calories | Acute: Provide a steady source of energy, avoid excessive intake; target blood glucose: 140–180 mg/dL. | |
Fats | 25–40% of total calories | Emphasize omega-3 fatty acids (e.g., fish oil) for anti-inflammatory effects. | |
Fiber | Avoid or limit | 25–30 g/day | Supports gut health and prevents constipation; avoid in cases of ileus or bowel obstruction. |
Fluids | 30–35 mL/kg/day | Adjust based on hydration status, renal function, and fluid losses. | |
Micronutrients | - Vitamin C: 500–1000 mg/day | Support immune function, wound healing, and metabolic processes. | |
- Vitamin D: 1000–2000 IU/day | |||
- Zinc: 15–30 mg/day | |||
- Selenium: 50–100 mcg/day | |||
- Magnesium: 200–400 mg/day | |||
Immunonutrition | - Glutamine: Avoid in severe sepsis/multiorgan failure | - Glutamine: 0.3–0.5 g/kg/day | Enhances gut integrity, wound healing, and inflammation modulation. |
- Arginine: Use cautiously | Immunonutrition is context-specific; avoid in certain conditions (e.g., severe sepsis). | ||
- Omega-3 Fatty Acids: 1–2 g/day |
Research Focus | Key Questions | Expected Impact |
---|---|---|
Feeding Strategies | Low-rate vs. high-dose EN; EN vs. PN; patient-specific approaches | Optimize feeding protocols to improve outcomes and reduce complications. |
Refeeding Syndrome and GI Tools | Define refeeding syndrome in the ICU; improve GI function assessment tools | Prevent complications and ensure safe nutritional support. |
Protein Delivery | Protein targeting based on lean body mass | Refine strategies for complex, dynamic critical illness. |
Biomarkers and Monitoring | Biomarkers for phase transition, overfeeding harm, and individualized nutrition | Enable precision nutrition and real-time adjustments in ICU care. |
Sepsis and Repeated Episodes | Nutritional management during recurrent sepsis | Refine strategies for complex, dynamic critical illness. |
Outcome Measures | Clinically relevant and patient-centered outcomes | Align research with patient needs and improve long-term recovery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cehan, V.-D.; Cehan, A.-R.; Pui, M.C.; Lazar, A. A New Perspective on Overfeeding in the Intensive Care Unit (ICU): Challenges, Dangers and Prevention Methods. Life 2025, 15, 828. https://doi.org/10.3390/life15050828
Cehan V-D, Cehan A-R, Pui MC, Lazar A. A New Perspective on Overfeeding in the Intensive Care Unit (ICU): Challenges, Dangers and Prevention Methods. Life. 2025; 15(5):828. https://doi.org/10.3390/life15050828
Chicago/Turabian StyleCehan, Vlad-Dimitrie, Alina-Roxana Cehan, Mihai Claudiu Pui, and Alexandra Lazar. 2025. "A New Perspective on Overfeeding in the Intensive Care Unit (ICU): Challenges, Dangers and Prevention Methods" Life 15, no. 5: 828. https://doi.org/10.3390/life15050828
APA StyleCehan, V.-D., Cehan, A.-R., Pui, M. C., & Lazar, A. (2025). A New Perspective on Overfeeding in the Intensive Care Unit (ICU): Challenges, Dangers and Prevention Methods. Life, 15(5), 828. https://doi.org/10.3390/life15050828