Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics
Abstract
:1. Introduction
- We have designed a new control section structure for side-viewing duodenoscopes used in ERCP procedures. It’s easy to drive and its response is comparable to standard duodenoscopes.
- We have proposed a type of orthogonal and hysteresis compensation controller based on the Prandtl-Ishlinskii model to compensate for the coupling problem of U/D and L/R direction movements and the nonlinear hysteresis effect of bending.
- We utilize torque sensors of bending drive motors to calibrate the internal resistance of the duodenoscope and achieve contact force prediction for the distal end, thereby setting the contact force threshold of the distal end to prevent excessive force during movement.
2. Materials and Methods
2.1. Structure Design
2.2. Orthogonal Compensation
- When the bending section is bent due to the tension of a single wire, the distal end direction aligns with the direction of the angulation wire hole (shown in Figure 4a). This implies that the direction of the distal end will always remain within the same plane in this situation.
- When the snake bone bends due to the tension of multiple wires, the bending direction of the distal end of the snake bone is the resultant vector of the individual wire tensions.
2.3. Hysteresis Compensation
2.4. Contact Force Control
3. Results
3.1. Basic Performance
3.2. Orthogonal and Hysteresis Compensation
3.3. Contact Force Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvin, G. Review of Musculoskeletal Injuries and Prevention in the Endoscopy Practitioner. J. Clin. Gastroenterol. 2014, 48, 590–594. [Google Scholar] [CrossRef] [PubMed]
- North, O.J.; Ristic, M.; Wadsworth, C.A.; Young, I.R.; Taylor-Robinson, S.D. Design and Evaluation of Endoscope Remote Actuator for MRI-Guided Endoscopic Retrograde Cholangio-Pancreatography (ERCP). In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 787–792. [Google Scholar]
- Ruiter, J.; Rozeboom, E.; van der Voort, M.; Bonnema, M.; Broeders, I. Design and Evaluation of Robotic Steering of a Flexible Endoscope. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 761–767. [Google Scholar]
- Lee, D.-H.; Cheon, B.; Kim, J.; Kwon, D.-S. easyEndo Robotic Endoscopy System: Development and Usability Test in a Randomized Controlled Trial with Novices and Physicians. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2158. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, A.; Van Dam, J.; Jakobs, R.; Kudis, V.; Hartmann, D.; Damian, U.; Weickert, U.; Schilling, D.; Riemann, J.F. Computer-Assisted Colonoscopy (The NeoGuide Endoscopy System): Results of the First Human Clinical Trial (“PACE Study”). Am. J. Gastroenterol. 2007, 102, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.; Kwon, D. K-FLEX: A Flexible Robotic Platform for Scar-free Endoscopic Surgery. Int. J. Med. Robot. 2020, 16, e2078. [Google Scholar] [CrossRef]
- Berthet-Rayne, P.; Gras, G.; Leibrandt, K.; Wisanuvej, P.; Schmitz, A.; Seneci, C.A.; Yang, G.-Z. The i2Snake Robotic Platform for Endoscopic Surgery. Ann. Biomed. Eng. 2018, 46, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Le, H.M.; Do, T.N.; Phee, S.J. A Survey on Actuators-Driven Surgical Robots. Sens. Actuators A Phys. 2016, 247, 323–354. [Google Scholar] [CrossRef]
- Kim, J.; de Mathelin, M.; Ikuta, K.; Kwon, D.-S. Advancement of Flexible Robot Technologies for Endoluminal Surgeries. Proc. IEEE 2022, 110, 909–931. [Google Scholar] [CrossRef]
- Song, D.; Li, J.; Zhao, J.; Zhang, G.; Wang, S.; Shi, C. Development of a Modified Generalized Prandtl–Ishlinskii Modeling and Compensation Method for Complex Hysteresis Behaviors of the Flexible Ureteroscope. IEEE Trans. Med. Robot. Bionics 2023, 5, 903–915. [Google Scholar] [CrossRef]
- Baek, D.; Seo, J.-H.; Kim, J.; Kwon, D.-S. Hysteresis Compensator With Learning-Based Hybrid Joint Angle Estimation for Flexible Surgery Robots. IEEE Robot. Autom. Lett. 2020, 5, 6837–6844. [Google Scholar] [CrossRef]
- Lee, D.-G.; Baek, D.; Kim, H.; Kim, J.; Kwon, D.-S. Learning-Based Discrete Hysteresis Classifier Using Wire Tension and Compensator for Flexible Endoscopic Surgery Robots. Int. J. Precis. Eng. Manuf. 2023, 24, 83–94. [Google Scholar] [CrossRef]
- Cursi, F.; Bai, W.; Yeatman, E.M.; Kormushev, P. Model Learning With Backlash Compensation for a Tendon-Driven Surgical Robot. IEEE Robot. Autom. Lett. 2022, 7, 7958–7965. [Google Scholar] [CrossRef]
- Zhang, A.; Han, Z.; Wang, X.; Briggs, R.; Xie, T. Mixed Control Scheme for Accurate Control of Robotic Flexible Endoscope. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417702506. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, G.; Zhang, C.; Wang, Z.; Zhang, Z.; Liu, H. Modeling of a Joint-Type Flexible Endoscope Based on Elastic Deformation and Internal Friction. Adv. Robot. 2019, 33, 985–995. [Google Scholar] [CrossRef]
- Li, Z.; Shan, J.; Gabbert, U. A Direct Inverse Model for Hysteresis Compensation. IEEE Trans. Ind. Electron. 2021, 68, 4173–4181. [Google Scholar] [CrossRef]
- Dupont, P.E.; Simaan, N.; Choset, H.; Rucker, C. Continuum Robots for Medical Interventions. Proc. IEEE 2022, 110, 847–870. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Sadati, S.M.H.; Dong, X.; Mohammad, A.; Walker, I.D.; Bergeles, C.; Xu, K.; Axinte, D.A. Continuum Robots: An Overview. Adv. Intell. Syst. 2023, 5, 2200367. [Google Scholar] [CrossRef]
- Ryu, H.-T.; Kang, L.; Yi, B.-J. Application of Cosserat Rod Theory to Configuration Estimation of Coionoscope. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 11–13. [Google Scholar]
- Isbister, A.; Bailey, N.Y.; Georgilas, I. An Integrated Kinematic Modeling and Experimental Approach for an Active Endoscope. Front. Robot. AI 2021, 8, 667205. [Google Scholar] [CrossRef]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Schneider, J.; Duckworth-Mothes, B.; Schweizer, U.; Königsrainer, A.; Fisch, J.; Wichmann, D. Exerting Forces and Wall Load during Duodenoscopy for ERCP: An Experimental Measurement in an Artificial Model. Bioengineering 2023, 10, 523. [Google Scholar] [CrossRef]
- Takano, S.; Fukasawa, M.; Shindo, H.; Takahashi, E.; Hirose, S.; Fukasawa, Y.; Kawakami, S.; Hayakawa, H.; Yokomichi, H.; Kadokura, M.; et al. Risk Factors for Perforation during Endoscopic Retrograde Cholangiopancreatography in Post-Reconstruction Intestinal Tract. World J. Clin. Cases 2019, 7, 10–18. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, X.; Liu, H.; Housden, J.; Rhode, K.; Hou, Z.-G.; Wang, S. Contact Force Prediction for a Robotic Transesophageal Ultrasound Probe via Operating Torque Sensing. In Proceedings of the Simplifying Medical Ultrasound; Aylward, S., Noble, J.A., Hu, Y., Lee, S.-L., Baum, Z., Min, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 152–161. [Google Scholar]
- Lee, D.-H.; Kim, Y.-H.; Collins, J.; Kapoor, A.; Kwon, D.-S.; Mansi, T. Non-Linear Hysteresis Compensation of a Tendon-Sheath-Driven Robotic Manipulator Using Motor Current. IEEE Robot. Autom. Lett. 2021, 6, 1224–1231. [Google Scholar] [CrossRef]
- Legrand, J.; Javaux, A.; Ourak, M.; Wenmakers, D.; Vercauteren, T.; Deprest, J.; Ourselin, S.; Denis, K.; Vander Poorten, E. Handheld Active Add-On Control Unit for a Cable-Driven Flexible Endoscope. Front. Robot. AI 2019, 6, 87. [Google Scholar] [CrossRef] [PubMed]
Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
Results | −8.174 | 13.73 | 17.27 | 0.02846 | 0.01111 | 0.03495 | 0.1183 | 13.35 | 3.396 |
Instruments | Guidewire | Extraction Basket | Bile Duct Drainage Tube | Biliary Stent | Nasobiliary Drainage Tube |
---|---|---|---|---|---|
RMSE (°) | 2.15 | 2.05 | 2.60 | 1.99 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Yan, R.; Liu, B.; Yang, C.; Xie, T. Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics. Machines 2024, 12, 500. https://doi.org/10.3390/machines12080500
Cheng Y, Yan R, Liu B, Yang C, Xie T. Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics. Machines. 2024; 12(8):500. https://doi.org/10.3390/machines12080500
Chicago/Turabian StyleCheng, Yuxuan, Ruyan Yan, Bingyi Liu, Chun Yang, and Tianyu Xie. 2024. "Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics" Machines 12, no. 8: 500. https://doi.org/10.3390/machines12080500
APA StyleCheng, Y., Yan, R., Liu, B., Yang, C., & Xie, T. (2024). Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics. Machines, 12(8), 500. https://doi.org/10.3390/machines12080500