Next Article in Journal
Two-Stage SART Process: A Feasible Alternative for Gold Cyanidation Plants with High Zinc and Copper Contents
Previous Article in Journal
Evaluation of Magnetic Separation Efficiency on a Cassiterite-Bearing Skarn Ore by Means of Integrative SEM-Based Image and XRF–XRD Data Analysis
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Minerals 2018, 8(9), 391; https://doi.org/10.3390/min8090391

Interpretation of Hydrophobization Behavior of Dodecylamine on Muscovite and Talc Surface through Dynamic Wettability and AFM Analysis

1
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2
Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China
*
Author to whom correspondence should be addressed.
Received: 31 July 2018 / Revised: 2 September 2018 / Accepted: 4 September 2018 / Published: 6 September 2018
Full-Text   |   PDF [7188 KB, uploaded 6 September 2018]   |  

Abstract

In this study, a new approach, “dynamic wettability”, and atomic force microscopy (AFM) imaging analysis techniques were successfully used to characterize the hydrophobization mechanism of the collector dodecylamine (DDA) on muscovite and talc surfaces. The attachment of bubbles to the minerals was studied through the dynamic contact angle to gain a detailed understanding of the hydrophobization mechanism of DDA on a muscovite and talc surface. AFM imaging and interaction forces were performed to explain the DDA adsorption mechanism on both minerals. Finally, flotation tests were performed to verify the effectiveness of these techniques. After treatments with DDA, the contact angles became much larger compared to initial angles, particularly for muscovite, and the attachment of bubbles on the talc surface was much easier than muscovite due to its natural hydrophobicity. From AFM imaging, both the muscovite and talc showed a similar tendency; the higher the DDA concentration, the more the adsorbed amount. However, the adsorbed amount of DDA on talc surface was obviously more than that on muscovite. As far as interaction forces are concerned, the maximum attractions occurred at certain different concentrations respectively for muscovite and talc and agreed well with the AFM-imaging results. Moreover, results obtained from flotation tests were promising and quite in agreement with the phenomenon of these techniques. View Full-Text
Keywords: hydrophobization; dodecylamine; characterization technique; muscovite; talc; AFM hydrophobization; dodecylamine; characterization technique; muscovite; talc; AFM
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Jiang, H.; Gao, Y.; Khoso, S.A.; Ji, W.; Hu, Y. Interpretation of Hydrophobization Behavior of Dodecylamine on Muscovite and Talc Surface through Dynamic Wettability and AFM Analysis. Minerals 2018, 8, 391.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top