Abstract
Coal combustion residues are often useful components for the cement industry. This study represents a material characterization and screening analysis by focusing on the mineralogical, physicochemical, and petrographic compositions of fly and bottom ash samples from four Greek power plants in order to evaluate their suitability and potential in industrial applications, especially as fillers in cement manufacturing. Proximate analysis revealed LOI values exceeding ASTM C618-22 limits. The sum of SiO2, CaO, and Al2O3 classifies the studied samples as Class C except one. Iron and magnesium oxides are among the major components, while S, Ni, and Sr are also contained in significant amounts. Calcite, quartz, and plagioclases dominate, corresponding to their geochemical profile, while secondary mineral phases (i.e., neo-formed minerals during coal combustion) such as natrolite and gehlenite, were also identified. Relatively high amounts of carbonized organic matter and unburnt organic particles point to the incomplete combustion process, revealing the risk of slagging into the combustion chamber; this is confirmed through the high slagging and fouling indices. The amount of the magnetic fraction is low; magnetic spherules with complex surface structures and a wide range of spherule sizes were observed. While the pozzolanic character of the samples is strong, high values of LOI, S content, and carbonized organic material make them suitable for the cement industry after further treatment only.
Keywords:
coal; bottom ash; char morphotype; concrete; fly ash; Greece; Portland cement; recycling economy