Abstract
Accurate wind power prediction is of great significance for the dispatch, security, and stable operation of energy systems. It helps enhance the symmetry and coordination between the highly stochastic and volatile nature of the power generation supply side and the stringent requirements for stability and power quality on the grid demand side. To further enhance the accuracy of ultra-short-term wind power forecasting, this paper proposes a novel prediction framework based on multi-layer data decomposition, reconstruction, and a combined prediction model. A multi-stage decomposition and reconstruction technique is first employed to significantly reduce noise interference: the Sparrow Search Algorithm (SSA) is utilized to optimize the parameters for an initial Variational Mode Decomposition (VMD), followed by a secondary decomposition of the high-frequency components using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). The resulting components are then reconstructed based on Sample Entropy (SE), effectively improving the quality of the input data. Subsequently, a hybrid prediction model named IMGWO-BiTCN-BiGRU is constructed to extract spatiotemporal bidirectional features from the input sequences. Finally, simulation experiments are conducted using actual measurement data from the Sotavento wind farm in Spain. The results demonstrate that the proposed hybrid model outperforms benchmark models across all evaluation metrics, validating its effectiveness in improving forecasting accuracy and stability.