Complementary Continuous-Discrete Time, Chronon Layering and Temporal Folding
Abstract
1. Introduction
Scope and Status of Claims
2. Foundational Framework
2.1. Dual Representation and Matching
2.2. Borel Structure and Renormalization
Definition (Temporal Layer and Slot Space)
3. Spin-Action Structure and Elementary Layers
4. The Layer and Pair-Locked
5. The Dodecad: Structure and Stability of
6. Emergence of Gauge Symmetry and Charges
7. Generation Structure and Anomaly Cancellation
8. Higgs and Neutrino Sectors
9. Effective Field Theory and Gravity
10. Entanglement as Temporal Contextuality
11. Discussion and Open Problems
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Relativity of Temporal Resolution and RG-Flow Transformations
Appendix A.1. Beyond Kinematic Relativity
Appendix A.2. Temporal Frames of Reference
Appendix A.3. Signature and Local Lorentz Invariance
Appendix A.4. Foundational Postulates
Appendix A.5. The Extended Principle of Relativity
Appendix A.5.1. Principle of Temporal Relativity
Appendix A.5.2. Layered Covariance and Invariants
- 1.
- Local Lorentz Invariance Within any , the effective laws of physics are locally invariant under the Poincaré group SO(N, 1) of the emergent (N+1)D spacetime (a consequence of the Signature Theorem).
- 2.
- Invariance of Action: The fundamental quantum of action ℏ is invariant across all TFRs.
Appendix A.5.3. Law of Transformation: RG-Flow
- Notation (No Multiple Physical Times)
Appendix A.6. The Signature Theorem
- Internal statistical isotropy: all internal slots are statistically equivalent, hence the restriction of to the internal subspace must be proportional to the identity.
- Synchronous update: the fundamental rule updates all internal slots simultaneously with the global tick . The generating vector field is therefore orthogonal (with respect to ) to all internal directions , and mixed terms are absent in the effective line element.
- (i)
- Internal statistical isotropy and synchronous update hold, so that (A5) is valid;
- (ii)
- Temporal Dominance: along every physically admissible worldline one has and proper time never runs faster than the global coordinate time;
- (iii)
- Dynamic non-triviality of internal directions: the quadratic form restricted to the internal coordinates is non-zero, i.e., there exist free excitations propagating along the layer with for some i in some affine parameterisation .
- (a)
- the metric is non-degenerate;
- (b)
- its signature is Lorentzian of type , one positive and N negative eigenvalues;
- (c)
- after a suitable rescaling of coordinates one can writefor some constant . The linear group preserving (A6) is .
Appendix A.7. RG Flow and Its Heuristic Relation to Boosts
Appendix B. Borel Structure, Hyperfiniteness and Renormalisation
Appendix B.1. Temporal Layers
Appendix B.2. Toy Example: A Bernoulli Base Process, the Slot Hilbert Space, and Permutation Constraints
- Slot Hilbert space.
- Commutant constraint on .
Appendix C. Floquet-Type Temporal Modulation and the Effective Gravitational Constant
References
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 49, 769–822. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Grav. 2004, 21, R53. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Perez, A. The spin-foam approach to quantum gravity. Living Rev. Relativ. 2013, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521–524. [Google Scholar] [CrossRef]
- Sorkin, R.D. Causal sets: Discrete gravity (notes for the Valdivia summer school). In Lectures on Quantum Gravity; Gomberoff, A., Marolf, D., Eds.; Springer: Boston, MA, USA, 2005; pp. 305–327. [Google Scholar]
- Henson, J. The causal set approach to quantum gravity. In Approaches to Quantum Gravity; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 393–413. [Google Scholar]
- Dowker, F. Causal sets and the deep structure of spacetime. In 100 Years of Relativity: Space-Time Structure: Einstein and Beyond; Ashtekar, A., Ed.; World Scientific: Singapore, 2005; pp. 445–464. [Google Scholar]
- Surya, S. The causal set approach to quantum gravity. Living Rev. Relativ. 2019, 22, 5. [Google Scholar] [CrossRef]
- Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative quantum gravity. Phys. Rep. 2012, 519, 127–210. [Google Scholar] [CrossRef]
- Loll, R. Quantum gravity from causal dynamical triangulations: A review. Class. Quantum Grav. 2020, 37, 013002. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Emergence of a 4D world from causal quantum gravity. Phys. Rev. Lett. 2004, 93, 131301. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. The spectral dimension of the universe is scale dependent. Phys. Rev. Lett. 2005, 95, 171301. [Google Scholar] [CrossRef]
- Niedermaier, M.; Reuter, M. The asymptotic safety scenario in quantum gravity. Living Rev. Relativ. 2006, 9, 5. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 1968, 12, 1040–1041. [Google Scholar]
- Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Sakharov’s induced gravity: A modern perspective. Mod. Phys. Lett. A 2002, 17, 977–992. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Verlinde, E.P. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 029. [Google Scholar] [CrossRef]
- Kothawala, D.; Padmanabhan, T. Entropy density of spacetime as a relic from quantum gravity. Phys. Rev. D 2014, 90, 124060. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A. Why the Standard Model. J. Geom. Phys. 2008, 58, 38–47. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 2010, 82, 2701–2729. [Google Scholar] [CrossRef]
- Finster, F. Causal fermion systems-An overview. J. Phys. Conf. Ser. 2015, 626, 012020. [Google Scholar] [CrossRef]
- Kechris, A.S. Classical Descriptive Set Theory; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1995; Volume 156. [Google Scholar]
- Gao, S. Invariant Descriptive Set Theory; Pure and Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2009; Volume 293. [Google Scholar]
- Dougherty, R.; Jackson, S.; Kechris, A.S. The structure of hyperfinite Borel equivalence relations. Trans. Am. Math. Soc. 1994, 341, 193–225. [Google Scholar] [CrossRef]
- Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Éc. Norm. Supér. 1883, 12, 47–88. [Google Scholar] [CrossRef]
- Bukov, M.; D’Alessio, L.; Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering. Adv. Phys. 2015, 64, 139–226. [Google Scholar] [CrossRef]
- Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [Google Scholar] [CrossRef]
- Vieira, J.P.P. The universe as a driven quantum system: Unbounded heating in cyclic cosmologies. Phys. Rev. D 2021, 104, 123504. [Google Scholar]
- Berenguer, M.; Garbayo, A.; Mas, J.; Ramallo, A.V. Holographic Floquet states in low dimensions (II). J. High Energy Phys. 2022, 12, 20. [Google Scholar] [CrossRef]
- Mohapatra, R.N. Dark matter and mirror world. Entropy 2024, 26, 282. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge Nonlinear Science Series; Cambridge University Press: Cambridge, UK, 2001; Volume 12. [Google Scholar]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; Taylor & Francis: New York, NY, USA, 1992. [Google Scholar]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Budroni, C.; Cabello, A.; Gühne, O.; Kleinmann, M.; Larsson, J.-Å. Kochen-Specker contextuality. Rev. Mod. Phys. 2022, 94, 045007. [Google Scholar] [CrossRef]
- Held, C. The Kochen-Specker theorem. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2022. [Google Scholar]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef]
- Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Relativ. 2005, 8, 5. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zeeman, E.C. Causality implies the Lorentz group. J. Math. Phys. 1964, 5, 490–493. [Google Scholar] [CrossRef]
- Malament, D.B. The class of continuous timelike curves determines the topology of spacetime. J. Math. Phys. 1977, 18, 1399–1404. [Google Scholar] [CrossRef]
- Gao, S.; Jackson, S. Countable abelian group actions and hyperfinite equivalence relations. Invent. Math. 2015, 201, 309–383. [Google Scholar] [CrossRef]
- Kechris, A.S. The Theory of Countable Borel Equivalence Relations; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2024; Volume 234. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Hu, B.L.; Verdaguer, E. Stochastic gravity: A primer with applications. Class. Quantum Grav. 2003, 20, R1–R42. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Noise and fluctuations in semiclassical gravity. Phys. Rev. D 1994, 49, 6636–6655. [Google Scholar] [CrossRef]
- Calzetta, E.A.; Hu, B.L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Hu, B.L.; Verdaguer, E. Stochastic gravity: Theory and applications. Living Rev. Relativ. 2004, 7, 3. [Google Scholar] [CrossRef]
- Strauch, F.W. Relativistic quantum walks. Phys. Rev. A 2006, 73, 054302. [Google Scholar] [CrossRef]
- Strauch, F.W. Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 2006, 74, 030301(R). [Google Scholar] [CrossRef]
- Bracken, A.J.; Ellinas, D.; Smyrnakis, I. Free-Dirac-particle evolution as a quantum random walk. Phys. Rev. A 2007, 75, 022322. [Google Scholar] [CrossRef]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quantum Inf. Process. 2012, 11, 1015–1106. [Google Scholar] [CrossRef]
- Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 2012, 109, 160401. [Google Scholar] [CrossRef]
- Zhang, J.; Hess, P.W.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A.C.; Vishwanath, A.; et al. Observation of a discrete time crystal. Nature 2017, 543, 217–220. [Google Scholar] [CrossRef]
- Wilson, K.G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 1971, 4, 3174–3183. [Google Scholar] [CrossRef]
| Layer | Minimal Structural Input (Assumption/Model Choice) | Slot Space | Resulting Internal Symmetry (Interpretation) |
|---|---|---|---|
| Two-slot cell, global phase invariance of | (seed for hypercharge) | ||
| Full slot equivalence, commutant constraint, isotropic/degenerate triplet sector | (color sector, modulo phase) | ||
| Pair partition + pair-locking (coherent doublets) | (weak isospin from locked doublet) | ||
| Simultaneous triad/quartet invariances, intersection of commutants in adapted factorization | , charges/anomalies; 3 compatible triad embeddings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Abishev, M.; Berkimbayev, D.Z. Complementary Continuous-Discrete Time, Chronon Layering and Temporal Folding. Symmetry 2026, 18, 252. https://doi.org/10.3390/sym18020252
Abishev M, Berkimbayev DZ. Complementary Continuous-Discrete Time, Chronon Layering and Temporal Folding. Symmetry. 2026; 18(2):252. https://doi.org/10.3390/sym18020252
Chicago/Turabian StyleAbishev, Medeu, and Daulet Z. Berkimbayev. 2026. "Complementary Continuous-Discrete Time, Chronon Layering and Temporal Folding" Symmetry 18, no. 2: 252. https://doi.org/10.3390/sym18020252
APA StyleAbishev, M., & Berkimbayev, D. Z. (2026). Complementary Continuous-Discrete Time, Chronon Layering and Temporal Folding. Symmetry, 18(2), 252. https://doi.org/10.3390/sym18020252

