Tin Phthalocyanine Nanoprobes with Symmetric Macrocyclic Structures: Nonlinear Dynamics of Pulse Trains with Tunable ps/ns Subpulse Widths and Enhanced Optical Limiting for MEMS Microdevices
Abstract
1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nwaji, N.; Dingiswayo, S.; Mack, J.; Nyokong, T. Photophysical and Enhanced Nonlinear Optical Response in Asymmetric Benzothiazole Substituted Phthalocyanine Covalently Linked to Semiconductor Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Pang, H.; Quan, W.; Fan, W.; Yuan, L.; Zhang, K.; Fang, C. Pulsed optical pumping in electron spin vapor. Measurement 2024, 231, 114619. [Google Scholar] [CrossRef]
- Dong, Y.; Li, W.; Zhang, J.; Luo, W.; Fu, H.; Xing, X.; Hu, P.; Dong, Y.; Tan, J. High-speed PGC demodulation model and method with subnanometer displacement resolution in a fiber-optic micro-probe laser interferometer. Photonics Res. 2024, 12, 921–931. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Song, J.; Liu, X.; Liu, S.; Yang, N.; Wang, L.; Liu, Y.; Zhao, Y.; Zhou, W.; et al. Tumor Cell-Targeting and Tumor Microenvironment–Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int. J. Nanomed. 2024, 19, 5837–5858. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, Y.; Xie, B.; Wu, H.; Cheng, L.; Guo, Y.; Cai, C.; Hou, M.; Chen, X. Microdynamic behaviors of Au/Ni-assisted chemical etching in fabricating silicon nanostructures. Appl. Surf. Sci. 2025, 696, 162915. [Google Scholar] [CrossRef]
- Xu, Y.F.; Liu, Z.B.; Zhang, X.L.; Wang, Y.; Tian, J.G.; Huang, Y.; Ma, Y.F.; Zhang, X.Y.; Chen, Y.S. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 2009, 21, 1275–1279. [Google Scholar] [CrossRef]
- Ren, J.S.; Yang, P.Y.; Wang, A.J.; Zhu, W.H.; Shang, D.H.; Song, Y.L. Synergistic promoted nonlinear optical effects in polyaniline nanohybrids covalently functionalized with tin porphyrin. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 650, 129588. [Google Scholar] [CrossRef]
- Li, D.J.; Li, Q.H.; Gu, Z.G.; Zhang, J. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting. Nano Lett. 2021, 21, 10012–10018. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef]
- Di Zazzo, L.; Magna, G.; Lucentini, M.; Stefanelli, M.; Paolesse, R.; Di Natale, C. Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. Chemosensors 2021, 9, 356. [Google Scholar] [CrossRef]
- Thanopulos, I.; Paspalakis, E.; Yannopapas, V. Optical switching of electric charge transfer pathways in porphyrin: A light-controlled nanoscale current router. Nanotechnology 2008, 19, 445202. [Google Scholar] [CrossRef]
- Szyszko, B. Phenanthrene-Embedded Carbaporphyrinoids and Related Systems: From Ligands to Cages and Molecular Switches. Eur. J. Org. Chem. 2022, 30, e202200714. [Google Scholar] [CrossRef]
- Liu, W.; Yang, S.; Li, J.T.; Su, G.R.; Ren, J.C. One molecule, two states: Single molecular switch on metallic electrodes. Eur. J. Org. Chem. 2020, 11, e1511. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Q.; Roncevic, I.; Christensen, K.E.; Anderson, H.L. Anthracene-Porphyrin Nanoribbons. Angew. Chem. Int. Ed. 2023, 62, e202307035. [Google Scholar] [CrossRef] [PubMed]
- Durantini, J.E.; Rubio, R.; Solis, C.; Macor, L.; Morales, G.M.; Mangione, M.I.; Heredia, D.A.; Durantini, E.N.; Otero, L.; Gervaldo, M. Electrosynthesis of a hyperbranched dendrimeric porphyrin polymer: Optical and electronic characterization as a material for bifunctional electrochromic supercapacitors. Sustain. Energy Fuels 2020, 4, 6125–6140. [Google Scholar] [CrossRef]
- Gavrilyuk, S.; Polyutov, S.; Jha, P.C.; Rinkeviciu, Z.; Ågren, H.; Gel’mukhanov, F. Many-Photon Dynamics of Photobleaching. J. Phys. Chem. A 2007, 111, 11961–11975. [Google Scholar] [CrossRef]
- Eriksson, A.; Bertlisson, K.; Lindgren, M. Simulation of beam propagation with time-dependent nonlinear processes in optical limiting applications. Synth. Met. 2002, 127, 147–150. [Google Scholar] [CrossRef]
- Polyzos, I.; Fakis, G.T.M.; Giannetas, V.; Persephonis, P.; Mikroyannidis, J. Two-photon absorption properties of novel organic materials for three-dimensional optical memories. Chem. Phys. Lett. 2003, 369, 264–268. [Google Scholar] [CrossRef]
- Blau, W.; Byrne, H.; Dennis, W.M.; Dennis, J.M.; Kelly, J.M. Reverse saturable absorption in tetraphenylporphyrins. Opt. Commun. 1985, 56, 25–29. [Google Scholar] [CrossRef]
- Dini, D.; Hanack, M.; Meneghetti, M. Nonlinear Optical Properties of Tetrapyrazinoporphyrazinato Indium Chloride Complexes Due to Excited-State Absorption Processes. J. Phys. Chem. B 2005, 109, 12691–12696. [Google Scholar] [CrossRef] [PubMed]
- De Boni, L.; Rezende, D.C.J.; Mendonca, C.R. Reverse saturable absorption dynamics in indocyanine green. J. Photochem. Photobiol. A Chem. 2007, 190, 41–44. [Google Scholar] [CrossRef]
- Quintiliani, M.; Perez-Moreno, J.; Asselberghs, I.; Vazquez, P.; Clays, K.; Torres, T. Synthesis and Nonlinear Optical Properties of Tetrahedral Octupolar Phthalocyanine-Based Systems. J. Phys. Chem. B 2010, 114, 6309–6315. [Google Scholar] [CrossRef]
- Yagodin, A.V.; Martynov, A.G.; Gorbunova, Y.G.; Tsivadze, A.Y. Synthesis, electronic structure and NH-tautomerism of novel mono- and dibenzoannelated phthalocyanines. Dye. Pigment. 2020, 181, 108564. [Google Scholar] [CrossRef]
- Britton, J.; Martynov, A.G.; Oluwole, D.O.; Gorbunova, Y.G.; Tsivadze, A.Y.; Nyokong, T. Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: Influence of symmetry lowering vs. heavy atom effect. J. Porphyr. Phthalocyanines 2016, 10, 1296–1305. [Google Scholar] [CrossRef]
- Kadish, K.M.; Smith, K.M.; Guilard, R. (Eds.) Handbook of Porphyrin Science; World Scientific Publishing: Singapore, 2010; Volume 3, pp. 1–323. [Google Scholar]
- Lukyanets, E.A.; Nemykin, V.N. The key role of peripheral substituents in the chemistry of phthalocyanines and their analogs. J. Porphyr. Phthalocyanines 2010, 14, 1–40. [Google Scholar] [CrossRef]
- Nemykin, V.N.; Lukyanets, E.A.A. Synthesis of substituted phthalocyanines. Arkivoc 2010, 1, 136–208. [Google Scholar] [CrossRef]
- Ince, M.; Yum, J.-H.; Kim, Y.; Mathew, S.; Grätzel, M.; Torres, T.; Nazeeruddin, M.K. Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 17166–17170. [Google Scholar] [CrossRef]
- Singh, V.P.; Singh, R.S.; Parthasarathy, B.; Aguilera, A.; Anthony, J.; Payne, M. Copper-phthalocyanine-based organic solar cells with high open-circuit voltage. Appl. Phys. Lett. 2005, 86, 082106. [Google Scholar] [CrossRef]
- Yuen, A.P.; Jovanovic, S.M.; Hor, A.M.; Klenkler, R.A.; Devenyi, G.A.; Loutfy, R.O.; Preston, J.S. Photovoltaic properties of M-phthalocyanine/fullerene organic solar cells. Sol. Energy 2012, 86, 1683–1688. [Google Scholar] [CrossRef]
- Walter, M.G.; Rudine, A.B.; Wamser, C.C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyr. Phthalocyanines 2010, 14, 759–792. [Google Scholar] [CrossRef]
- Bae, Y.J.; Lee, N.J.; Kim, T.H.; Cho, H.; Lee, C.; Fleet, L.; Hirohata, A. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes. Nanoscale Res. Lett. 2012, 7, 650. [Google Scholar] [CrossRef]
- Kao, P.-C.; Chu, S.-Y.; Liu, S.-J.; You, Z.-X.; Chuang, C.-A. Improved Performance of Organic Light-Emitting Diodes Using a Metal-Phthalocyanine Hole-Injection Layer. J. Electrochem. Soc. 2006, 153, H122–H126. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Xu, J.-J.; Lin, Y.-W.; Chen, Q.; Shan, H.-Q.; Yan, Y.; Roy, V.A.L.; Xu, Z.-X. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes. AIP Adv. 2015, 5, 107205. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, Q.; Lin, Y.; Shan, H.; Roy, V.A.L.; Xu, Z. Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers. J. Mater. Chem. C 2016, 4, 7377–7382. [Google Scholar] [CrossRef]
- Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 9, 916–966. [Google Scholar] [CrossRef] [PubMed]
- Taratula, O.; Schumann, C.; Naleway, M.A.; Pang, A.J.; Chon, K.J.; Taratula, O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm. 2013, 10, 3946–3958. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.B.E.; Balasundaram, G.; Driessen, W.; Ntziachristos, V.; Olivo, M. Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging, Biomed. Opt. Express 2015, 6, 591–598. [Google Scholar] [CrossRef]
- Rizvi, W.; Berisha, N.; Farley, C.; Bhupathiraju, N.V.S.D.K.; Andreou, C.; Khwaja, E.; Fuentes, G.V.; Kircher, M.F.; Gao, R.; Drain, C.M. Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging. Chemistry 2019, 25, 14517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lovell, J.F. Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip. Rev. 2017, 9, e1420. [Google Scholar] [CrossRef]
- Borg, R.E.; Rochford, J. Molecular Photoacoustic Contrast Agents: Design Principles and Applications. Photochem. Photobiol. 2018, 94, 1175–1209. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Zhang, Z.; Xing, D. Nonlinearly enhanced photoacoustic microscopy by picosecond-laser-pumped excited state absorption of phthalocyanine nanoprobes. Appl. Phys. Lett. 2021, 118, 193701. [Google Scholar] [CrossRef]
- Yang, S.S.; Wei, T.H.; Huang, T.H.; Chang, Y.C. Z-scan study of thermal nonlinearities in silicon naphthalocyanine-toluene solution with the excitations of the picosecond pulse train and nanosecond pulse. Opt. Express 2007, 15, 1718–1731. [Google Scholar] [CrossRef]
- Soboh, R.S.M.; Al-Masoodi, A.H.H.; Erman, F.N.A.; Al-Masoodi, A.H.; Arof, H.; Yasin, M.; Harun, S.W. Zinc phthalocyanine thin film as saturable absorber for Q-switched pulse generation. Opt. Fiber Technol. 2020, 57, 102235. [Google Scholar] [CrossRef]
- Vivas, M.G.; de Boni, L.; Gaffo, L.; Mendonca, C.R. Investigation of ground and excited state photophysical properties of gadolinium phthalocyanine. Dye. Pigment. 2014, 101, 338–343. [Google Scholar] [CrossRef]
- De Boni, L.; Piovesan, E.; Gaffo, L.; Mendonca, C.R. Resonant nonlinear absorption in Zn-phthalocyanines. J. Phys. Chem. A 2008, 112, 6803–6807. [Google Scholar] [CrossRef]
- Gonçalves, P.J.; Bezerra, F.C.; Almeida, L.M.; Alonso, L.; Souza, G.R.L.; Alonso, A.; Zílio, S.C.; Borissevitch, I.E. Borissevitch. Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4). Eur. Biophys. J. 2019, 48, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, P.J.; Correa, D.S.; Franzen, P.L.; De Boni, L.; Almeida, L.M.; Mendonca, C.R.; Borissevitch, I.E.; Zilio, S.C. Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 309. [Google Scholar] [CrossRef]
- De Paoli, V.M.; De Paoli, S.H.; Borissevitch, I.E.; Tedesco, A.C. Fluorescence lifetime and quantum yield of TMPyPH2 associated with micelles and DNA. J. Alloys Compd. 2002, 344, 27–31. [Google Scholar] [CrossRef]
- Goncalves, P.J.; De Boni, L.; Barbosa Neto, N.M.; Rodrigues, J.J., Jr.; Zilio, S.C.; Borissevitch, I.E. Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin. Chem. Phys. Lett. 2005, 407, 236–241. [Google Scholar] [CrossRef]
- Wei, T.H.; Huang, T.H.; Hu, J.K. Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses. J. Chem. Phys. 2002, 116, 2536. [Google Scholar] [CrossRef]
- Miao, Q.; Song, R.; Sun, E.; Xu, Y. How pulse train parameters take effect on nonlinear dynamics of naphthalocyanines and phthalocyanines? Mol. Phys. 2018, 116, 465–470. [Google Scholar] [CrossRef]
- Song, G.; Wu, X.; Zhou, W.; Xiao, J.; Zhang, X.; Wang, Y.; Song, Y. Pulse-width-dependent optical limiting properties of a novel twist-acene compound. Opt. Mater. 2023, 136, 113394. [Google Scholar] [CrossRef]
- Vivien, L.; Riehl, D.; Lançon, P.; Hache, F.; Anglaret, E. Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions. Opt. Lett. 2001, 26, 223–225. [Google Scholar] [CrossRef]
- Perumbilavil, S.; Sridharan, K.; Abraham, A.; Janardhanan, H.; Kalarikkal, N.; Philip, R. Nonlinear transmittance and optical power limiting in magnesium ferrite nanoparticles: Effects of laser pulsewidth and particle size. RSC Adv. 2016, 6, 106754–106761. [Google Scholar] [CrossRef]
- Hendow, S.T.; Shakir, S.A. Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems. Appl. Opt. 1986, 25, 1759. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Miao, Q.; Sun, E.P.; Xu, Y. Optical Dynamics of Picosecond Pulse Trains in Aluminum and Zinc Tetracarboxy-Phthalocyanines. Symmetry 2024, 16, 1337. [Google Scholar] [CrossRef]
- Ridhi, R.; Saini, G.S.S.; Tripathi, S.K. Effect of central metal ions on interaction of Metal Phthalocyanines composites with chemical analytes. Appl. Phys. A—Mater. Sci. Process. 2024, 130, 359. [Google Scholar] [CrossRef]
- Basova, T. Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance. Chemosensors 2024, 12, 56. [Google Scholar] [CrossRef]
- Wei, S.; Gao, B.; Wang, J.; You, Z. Vision Gaze-Driven Micro-Electro-Mechanical Systems Light Detection and Ranging Optimization. Research 2025, 8, 0756. [Google Scholar] [CrossRef] [PubMed]
- Gilewski, M. Micro-Electro-Mechanical Systems in Light Stabilization. Sensors 2023, 6, 2916. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Sugai, Y.; Wang, Y.J.; Zhang, H.M.; Zhang, X.M.; Sasaki, K. Experimental Study on Enhanced Methane Detection Using an MEMS-Pyroelectric Sensor Integrated with a Wavelet Algorithm. ACS Omega 2024, 9, 9956–19967. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-P.; Gavrilyuk, S.; Liu, J.-C.; Wang, C.-K.; Ågren, H.; Gel’mukhanov, F. Optical limiting and pulse reshaping of picosecond pulse trains by fullerene C60. J. Electron. Spectrosc. Relat. Phenom 2009, 174, 125–130. [Google Scholar] [CrossRef]
- Gel’mukhanov, F.; Ågren, H. Resonant X-ray Raman scattering. Phys. Rep. 1999, 312, 87–330. [Google Scholar] [CrossRef]
- Gavrilyuk, S.; Liu, J.C.; Kamada, K.; Ågren, H.; Gel’mukhanov, F. Optical limiting for microsecond pulses. J. Chem. Phys. 2009, 130, 054114. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, P.J.; De Boni, L.; Borissevitch, I.E.; Zilio, S.C. Excited State Dynamics of meso-Tetra(sulphonatophenyl) Metalloporphyrins. J. Phys. Chem. A 2008, 112, 6522–6526. [Google Scholar] [CrossRef] [PubMed]
(cm2) | (cm2) | (cm2) | |||
---|---|---|---|---|---|
Compounds | (ns) | (ns) | |||
2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Sun, E.; Xu, Y. Tin Phthalocyanine Nanoprobes with Symmetric Macrocyclic Structures: Nonlinear Dynamics of Pulse Trains with Tunable ps/ns Subpulse Widths and Enhanced Optical Limiting for MEMS Microdevices. Symmetry 2025, 17, 1528. https://doi.org/10.3390/sym17091528
Miao Q, Sun E, Xu Y. Tin Phthalocyanine Nanoprobes with Symmetric Macrocyclic Structures: Nonlinear Dynamics of Pulse Trains with Tunable ps/ns Subpulse Widths and Enhanced Optical Limiting for MEMS Microdevices. Symmetry. 2025; 17(9):1528. https://doi.org/10.3390/sym17091528
Chicago/Turabian StyleMiao, Quan, Erping Sun, and Yan Xu. 2025. "Tin Phthalocyanine Nanoprobes with Symmetric Macrocyclic Structures: Nonlinear Dynamics of Pulse Trains with Tunable ps/ns Subpulse Widths and Enhanced Optical Limiting for MEMS Microdevices" Symmetry 17, no. 9: 1528. https://doi.org/10.3390/sym17091528
APA StyleMiao, Q., Sun, E., & Xu, Y. (2025). Tin Phthalocyanine Nanoprobes with Symmetric Macrocyclic Structures: Nonlinear Dynamics of Pulse Trains with Tunable ps/ns Subpulse Widths and Enhanced Optical Limiting for MEMS Microdevices. Symmetry, 17(9), 1528. https://doi.org/10.3390/sym17091528