Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor
Abstract
1. Introduction
2. Sensor Fabrication and Working Principles
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lashari, G.A. Vernier Effect-Based Strain Sensor with Cascaded Fabry-Perot Interferometers. IEEE Sens. J. 2020, 20, 9196–9201. [Google Scholar]
- Wang, J.; Lu, X.; Mi, C.; Yin, Q.; Lv, J.; Yang, L.; Liu, W.; Yi, Z.; Liu, Q.; Chu, P.K.; et al. Ultra-high sensitivity photonic crystal fiber sensor based on dispersion turning point sensitization of surface plasmonic polariton modes for low RI liquid detection. Opt. Express 2024, 32, 32895–32908. [Google Scholar] [CrossRef]
- Chatterjee, K.; Arumuru, V.; Patil, D.; Jha, R. Multipoint monitoring of amplitude, frequency, and phase of vibrations using concatenated modal interferometers. Sci. Rep. 2022, 12, 3798. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Chen, T.; Zhang, J.; Wang, G.; Yan, M.; Yang, S. Rational electrochemical design of cuprous oxide hierarchical microarchitectures and their derivatives for SERS sensing applications. Small Methods 2024, 8, 2300910. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Zhong, M.; Fan, H.; Li, Z.; Lyu, S.; Xing, X.; Qin, W. Highly sensitive, wearable piezoresistive methylcellulose/chitosan@ MXene aerogel sensor array for real-time monitoring of physiological signals of pilots. Sci. China Mater. 2025, 68, 542–551. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Hu, P.-C.; Fu, H.; Yang, H.; Yang, R.; Dong, Y.K.; Zou, L.; Tan, J. Large-range displacement measurement in narrow space scenarios: Fiber microprobe sensor with subnanometer accuracy. Photonics Res. 2024, 12, 1877–1889. [Google Scholar] [CrossRef]
- Dong, Y.; Li, W.; Zhang, J.; Luo, W.; Fu, H.; Xing, X.; Hu, P.-C.; Dong, Y.K.; Tan, J. High-speed PGC demodulation model and method with subnanometer displacement resolution in a fiber-optic micro-probe laser interferometer. Photonics Res. 2024, 12, 921–931. [Google Scholar] [CrossRef]
- Qi, H.; Jing, X.; Hu, Y.; Wu, P.; Zhang, X.; Li, Y.; Zhao, H.; Ma, Q.; Dong, X.; Mahadevan, C. Electrospun green fluorescent-highly anisotropic conductive Janus-type nanoribbon hydrogel array film for multiple stimulus response sensors. Compos. Part. B Eng. 2025, 288, 111933. [Google Scholar] [CrossRef]
- Gao, X.; Ning, T.; Zhang, C.; Xu, J.; Zheng, J.; Lin, H.; Li, J.; Pei, L.; You, H. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun. 2020, 454, 124441. [Google Scholar] [CrossRef]
- Yang, T.; Qiao, X.; Rong, Q.; Bao, W. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement. Opt. Laser Technol. 2017, 93, 138–142. [Google Scholar] [CrossRef]
- Zheng, Y.; Shum, P.P.; Liu, S.; Li, B.; Auguste, J.-L.; Humbert, G.; Luo, Y. Strain sensitivity enhancement based on periodic deformation in hollow core fiber. Opt. Lett. 2020, 45, 3997–4000. [Google Scholar] [CrossRef]
- Dong, X.; Luo, Z.; Du, H.; Sun, X.; Yin, K.; Duan, J. Highly sensitive strain sensor based on a novel Mach-Zehnder mode inter- ferometer with TCF-PCF-TCF structure. Opt. Lasers Eng. 2019, 116, 26–31. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtsuka, Y. Fiber-optic strain sensor using a dual Mach-Zehnder interferometric configuration. Opt. Commun. 1991, 81, 267–272. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, J.; Wang, N.; Zhang, J.; Zhu, Y. Study of a fiber optic fabry-perot strain sensor for fuel assembly strain detection. Sensors 2022, 22, 9097. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Liu, Y.; Cao, K.; Qu, S. Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure. Opt. Express 2018, 26, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, Y.; Huang, Y.; Liao, C.; Bai, Z.; Hou, M.; Li, Z.; Wang, Y. Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement. Photonics Res. 2017, 5, 129–133. [Google Scholar] [CrossRef]
- Hou, M.; Wang, Y.; Liu, S.; Li, Z.; Lu, P. Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing. IEEE Sens. J. 2016, 16, 6192–6196. [Google Scholar] [CrossRef]
- Xu, Z.; Geng, Y.; Zhu, X.; Lu, J.; Yi, D.; Du, Y.; Wang, J.; Hong, X.; Li, X. Temperature insensitive distributed wide-dynamic-range strain sensing based on polarization-maintaining photonic crystal fiber. J. Phys. D Appl. Phys. 2024, 57, 305103. [Google Scholar] [CrossRef]
- Wei, Y.; Li, L.; Liu, C.; Wang, R.; Zhao, X.; Ran, Z.; Ren, Z.; Jiang, T. High sensitivity fiber cladding SPR strain sensor based on V-groove structure. Opt. Express 2022, 30, 7412–7425. [Google Scholar] [CrossRef]
- Ying, Y.; Wang, J.-K.; Xu, K.; Si, G.-Y. High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance. Opt. Commun. 2020, 460, 125147. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Li, Q.; Yang, L.; Lv, J.; Xu, L.; Yin, Q.; Liu, Q.; Chu, P.K.; Liu, C. A high-sensitivity strain sensor based on the core-offset fiber with a micro air bubble. Opt. Commun. 2024, 555, 130235. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, H.; Ma, Z.; Zhang, L.; Pang, F.; Wang, T. Microbubble-based optical fiber Fabry-Perot sensor for simultaneous high-pressure and high-temperature sensing. Opt. Express 2022, 30, 33639–33651. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Hu, J.; Song, J.; Zhu, X.; Wang, P.; Li, H. Temperature-insensitive optical fiber strain sensor fabricated by two parallel connection Fabry–Perot interferometers with air-bubbles. Rev. Sci. Instrum. 2023, 94, 045001. [Google Scholar] [CrossRef]
- Favero, F.C.; Araujo, L.; Bouwmans, G.; Finazzi, V.; Villatoro, J.; Pruneri, V. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 2012, 20, 7112–7118. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y.; Liao, C.; Wang, G.; Li, Z.; Wang, Q.; Zhou, J.; Yang, K.; Zhong, X.; Zhao, J.; et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer. Opt. Lett. 2014, 39, 2121–2124. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, J.; Mu, H.; Lv, J.; Yang, L.; Shi, Y.; Yi, Z.; Chu, P.K.; Liu, Q.; Liu, C. A Fabry–Pérot interferometer strain sensor composed of a rounded rectangular air cavity with a thin wall for high sensitivity and interference contrast. Opt. Commun. 2023, 527, 128920. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.N.; Chen, W.P. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement. Sci. Rep. 2016, 6, 38390. [Google Scholar] [CrossRef]
- Cai, L.; Wang, J.; Chen, M.; Ai, X. A high-sensitivity strain sensor based on an unsymmetrical air-microbubble Fabry-Pérot interferometer with an ultrathin wall. Measurement 2021, 181, 109651. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Zhang, W.; Li, Z.; Kong, L.; Yu, L.; Ge, J.; Yan, T. Ultra-high sensitivity and temperature compensated fabry-perot strain sensor based on tapered FBG. Opt. Laser Technol. 2020, 124, 105997. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, S.; Yang, P.; Wei, W.; Bao, W.; Peng, B.; Wei, W.; Bao, G. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI. Opt. Express 2023, 31, 7073–7089. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagic, D. All-fiber, long-active-length Fabry-Perot strain sensor. Opt. Express 2011, 19, 15641–15651. [Google Scholar] [CrossRef]
- Lv, J.; Li, W.; Meng, T.; Li, Q.; Wang, J.; Xu, X.; Wang, D.; Liu, W.; Liu, C.; Chu, P.K. Low-temperature cross-sensitivity strain sensor based on a microbubble Fabry-Pérot interferometer with a thin wall. Opt. Fiber Technol. 2023, 80, 103452. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Lv, J.; Song, X.; Liu, W.; Liu, Q.; Li, R.; Li, L.; Yi, Z.; Chu, P.K. Economical and easily implemented Vernier effect bubble microcavity FPI for strain sensing with extreme low-temperature cross-sensitivity. Infrared Phys. Technol. 2025, 150, 105939. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Li, Y.; Qu, S. Micro-newton strain force and temperature synchronous fiber sensor with a high Q-factor based on the quartz microbubble integrated in the capillary-taper structure. Opt. Express 2022, 30, 8750–8761. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lang, C.; Wei, X.; Qu, S. Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper. Opt. Express 2017, 25, 7797–7806. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Li, W.; Wang, J.; Lu, X.; Li, Q.; Ren, Y.; Yu, Y.; Liu, Q.; Chu, P.K.; Liu, C. High-sensitivity strain sensor based on an asymmetric tapered air microbubble Fabry-Pérot interferometer with an ultrathin wall. Opt. Express 2024, 32, 19057–19068. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Wu, J.; Yuan, P. Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements. Opt. Express 2017, 25, 9443–9448. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wang, Z.; Zhang, X.; Shang, Z. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures. Opt. Express 2019, 27, 27112–27123. [Google Scholar] [CrossRef]
- Li, L.; Jiang, C.; Hu, C.; Gao, J.; Deng, L.; Cao, T.; Li, H. Highly sensitive strain sensor based on tapered few-mode fiber. Rev. Sci. Instrum. 2023, 94, 075006. [Google Scholar] [CrossRef]
Process Stage | Nominal Value/Requirement | Tolerance | Error Source |
---|---|---|---|
Waist Diameter | 60–70 μm | ±5 μm | H2 flow fluctuation, pulling speed stability |
Taper Length (to 100 μm) | 2–3 mm | ±0.5 mm | Pulling displacement accuracy, thermal gradient |
Cleave Angle | 0° (ideal) | ≤0.5° | Cleaver accuracy, fiber holding stability |
SMF-HCT Axial Offset | 0 μm | ±0.5 μm | Splicer alignment accuracy (Fujikura 80s) |
Arc Parameters (200 ms, −10 bit) | Fixed | ±5% energy | Mechanical vibration, alignment algorithm limits |
Cavity Length (ΔL) | Design target | ±1.5 μm | L1/L2 error propagation, thermal expansion |
Types | Strain Range (με) | Strain Sensitivity (pm/με) | Temperature Sensitivity (pm/°C) | Temperature Cross-Sensitivity (με/°C) | References |
---|---|---|---|---|---|
Special air cavity FPI | 0–1100 με | 3.29 pm/με | 1.08 pm/°C | 0.328 με/°C | [37] |
Rounded rectangular air-cavity FPI | 0–1200 με | 8 pm/με | 1.79 pm/°C | 0.224 με/°C | [26] |
Approximately circular microbubble FPI | 0–1200 με | 10.78 pm/με | 1.24 pm/°C | 0.115 με/°C | [32] |
Asymmetric tapered FPI | 0–1200 με | 15.89 pm/με | 1.09 pm/°C | 0.069 με/°C | [36] |
Tapered two-mode fiber micro-cantilever FPI | 0–120 με | −2.98 nm/με | −69.3 pm/°C | 23 με/°C | [2] |
Sapphire derived fiber FPI | 0–1000 με | 1.25 pm/με | 15.41 pm/°C | 12.328 με/°C | [38] |
Tapered few mode fiber FPI | 0–450 με | −23.9 pm/με | −54.5 pm/°C | 2.28 με/°C | [39] |
With a long cantilever beam FPI | 0–150 με | 544.57 pm/με | 1.02 pm/°C | 0.0019 με/°C | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Kong, W.; Zhang, Y.; Yuan, H.; Lv, J.; Liu, C.; Liu, M.; Chu, P.K. Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor. Symmetry 2025, 17, 1284. https://doi.org/10.3390/sym17081284
Yu X, Kong W, Zhang Y, Yuan H, Lv J, Liu C, Liu M, Chu PK. Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor. Symmetry. 2025; 17(8):1284. https://doi.org/10.3390/sym17081284
Chicago/Turabian StyleYu, Xuntao, Weijie Kong, Yunfeng Zhang, Hongqi Yuan, Jingwei Lv, Chao Liu, Miao Liu, and Paul K. Chu. 2025. "Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor" Symmetry 17, no. 8: 1284. https://doi.org/10.3390/sym17081284
APA StyleYu, X., Kong, W., Zhang, Y., Yuan, H., Lv, J., Liu, C., Liu, M., & Chu, P. K. (2025). Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor. Symmetry, 17(8), 1284. https://doi.org/10.3390/sym17081284