Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field
Abstract
1. Introduction
2. Summary of Gravity Coupled with Scalar Field
3. BH Solution with Spherical Symmetry in
Altered Schwarzschild Solution
4. Physics of the Black Hole (22)
5. Thermodynamics of the BH
Multi-Horizons Spacetime
6. Geodesic and Geodesic Deviation
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Will, C.M. New General Relativistic Contribution to Mercury’s Perihelion Advance. Phys. Rev. Lett. 2018, 120, 191101. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. The 1919 measurement of the deflection of light. Class. Quant. Grav. 2015, 32, 124001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett. 2019, 875, L2. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett. 2019, 875, L3. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar]
- Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett. 2021, 910, L12. [Google Scholar]
- Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett. 2021, 910, L13. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization. Astrophys. J. Lett. 2023, 957, L20. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett. 2022, 930, L13. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett. 2022, 930, L15. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett. 2022, 930, L16. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Garnavich, P.M.; Jha, S.; Challis, P.; Clocchiatti, A.; Diercks, A.; Filippenko, A.V.; Gilliland, R.L.; Hogan, C.J.; Kirshner, R.P.; Leibundgut, B.; et al. Supernova limits on the cosmic equation of state. Astrophys. J. 1998, 509, 74. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Wang, S.; Wang, Y. Dark Energy. Commun. Theor. Phys. 2011, 56, 525. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gravity with Negative and Positive Powers of the Curvature: Unification of the Inflation and of the Cosmic Acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Where new gravitational physics comes from: M Theory? Phys. Lett. B 2003, 576, 5. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe. Phys. Rev. D 2006, 74, 086005. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; El Hanafy, W.; Odintsov, S.D.; Oikonomou, V.K. Thermodynamical correspondence of f(R) gravity in the Jordan and Einstein frames. Int. J. Mod. Phys. D 2020, 29, 2050090. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D. Cosmological reconstruction of realistic modified F(R) gravities. Phys. Lett. B 2009, 681, 74. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Vacuum nonsingular black hole in tetrad theory of gravitation. Nuovo Cim. B 2002, 117, 521. [Google Scholar]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D.; Troisi, A. Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 2006, 639, 135. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Rotating black hole in f(R) theory. J. Cosmol. Astropart. Phys. 2021, 11, 007. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Specific neutral and charged black holes in f(R) gravitational theory. Phys. Rev. D 2021, 104, 124054. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Analytic charged BHs in f(R) gravity. Phys. Lett. B 2021, 820, 136475. [Google Scholar] [CrossRef]
- Bajardi, F.; Capozziello, S. f(G) Noether cosmology. Eur. Phys. J. C 2020, 80, 704. [Google Scholar] [CrossRef]
- De Laurentis, M.; Paolella, M.; Capozziello, S. Cosmological inflation in F(R,G) gravity. Phys. Rev. D 2015, 91, 083531. [Google Scholar] [CrossRef]
- Bajardi, F.; Dialektopoulos, K.F.; Capozziello, S. Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity. Symmetry 2020, 12, 372. [Google Scholar] [CrossRef]
- El Hanafy, W.; Nashed, G.L. Reconstruction of f(T)-gravity in the absence of matter. Astrophys. Space Sci. 2016, 361, 197. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Odintsov, S.D. Noether Symmetry Approach in Gauss-Bonnet Cosmology. Mod. Phys. Lett. A 2014, 29, 1450164. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 2015, 130, 124. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Singular Bouncing Cosmology from Gauss-Bonnet Modified Gravity. Phys. Rev. D 2015, 92, 124027. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rept. 2017, 692, 1. [Google Scholar] [CrossRef]
- Hendi, S.H.; Momennia, M.; Eslam Panah, B.; Faizal, M. NONSINGULAR UNIVERSES IN GAUSS–BONNET GRAVITY’S RAINBOW. Astrophys. J. 2016, 827, 153. [Google Scholar] [CrossRef]
- Hod, S. Spontaneous scalarization of Gauss-Bonnet black holes: Analytic treatment in the linearized regime. Phys. Rev. D 2019, 100, 064039. [Google Scholar] [CrossRef]
- Ma, L.; Lu, H. Bounds on photon spheres and shadows of charged black holes in Einstein-Gauss-Bonnet-Maxwell gravity. Phys. Lett. B 2020, 807, 135535. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhamidipati, C. Thermodynamic geometry for charged Gauss-Bonnet black holes in AdS spacetimes. Phys. Rev. D 2020, 101, 046005. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Swampland implications of GW170817-compatible Einstein-Gauss-Bonnet gravity. Phys. Lett. B 2020, 805, 135437. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P. Rectifying Einstein-Gauss-Bonnet Inflation in View of GW170817. Nucl. Phys. B 2020, 958, 115135. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Polar quasinormal modes of the scalarized Einstein-Gauss-Bonnet black holes. Phys. Rev. D 2020, 102, 024086. [Google Scholar] [CrossRef]
- Pozdeeva, E.O. Generalization of cosmological attractor approach to Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 612. [Google Scholar] [CrossRef]
- Kleihaus, B. Kunz, J.; Kanti, P. Properties of ultracompact particlelike solutions in Einstein-scalar-Gauss-Bonnet theories. Phys. Rev. D 2020, 102, 024070. [Google Scholar] [CrossRef]
- Samart, D.; Channuie, P. Gravitational phase transition mediated by thermalon in Einstein-Gauss-Bonnet-Maxwell-Kalb-Ramond gravity. J. High Energy Phys. 2020, 2020, 100. [Google Scholar] [CrossRef]
- Haroon, S.; Hennigar, R.A.; Mann, R.B.; Simovic, F. Thermodynamics of Gauss-Bonnet-de Sitter Black Holes. Phys. Rev. D 2020, 101, 084051. [Google Scholar] [CrossRef]
- Parai, D.; Ghorai, D.; Gangopadhyay, S. Effect of magnetic field on holographic insulator/superconductor phase transition in higher dimensional Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 232. [Google Scholar] [CrossRef]
- Eslam Panah, B.; Jafarzade, K.; Hendi, S.H. Charged 4D Einstein-Gauss-Bonnet-AdS black holes: Shadow, energy emission, deflection angle and heat engine. Nucl. Phys. B 2020, 961, 115269. [Google Scholar] [CrossRef]
- Kim, J.E.; Kyae, B.; Lee, H.M. Effective Gauss-Bonnet interaction in Randall-Sundrum compactification. Phys. Rev. D 2000, 62, 045013. [Google Scholar] [CrossRef]
- Cho, Y.M.; Neupane, I.P. Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 2002, 66, 024044. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Schwarzschild solution in extended teleparallel gravity. Europhys. Lett. 2014, 105, 10001. [Google Scholar] [CrossRef]
- Charmousis, C.; Dufaux, J.-F. General Gauss-Bonnet brane cosmology. Class. Quant. Grav. 2002, 19, 4671. [Google Scholar] [CrossRef]
- Kofinas, G.; Maartens, R.; Papantonopoulos, E. Brane cosmology with curvature corrections. J. High Energy Phys. 2003, 10, 066. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Saridakis, E.N. Stability of motion and thermodynamics in charged black holes in f(T) gravity. J. Cosmol. Astropart. Phys. 2022, 2022, 017. [Google Scholar] [CrossRef]
- Cai, R.-G.; Guo, Q. Gauss-Bonnet black holes in dS spaces. Phys. Rev. D 2004, 69, 104025. [Google Scholar] [CrossRef]
- Barrau, A.; Grain, J.; Alexeyev, S.O. Gauss-Bonnet black holes at the LHC: Beyond the dimensionality of space. Phys. Lett. B 2004, 584, 114. [Google Scholar] [CrossRef]
- Maeda, K.-I.; Torii, T. Covariant gravitational equations on brane world with Gauss-Bonnet term. Phys. Rev. D 2004, 69, 024002. [Google Scholar] [CrossRef]
- de Rham, C.; Tolley, A.J. Mimicking Lambda with a spin-two ghost condensate. J. Cosmol. Astropart. Phys. 2006, 2006, 004. [Google Scholar] [CrossRef]
- Dotti, G.; Oliva, J.; Troncoso, R. Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: Black holes, wormholes and spacetime horns. Phys. Rev. D 2007, 76, 064038. [Google Scholar] [CrossRef]
- Brown, R.A. Brane universes with Gauss-Bonnet-induced-gravity. Gen. Relativ. Gravit. 2007, 39, 477–500. [Google Scholar] [CrossRef]
- Maeda, H.; Sahni, V.; Shtanov, Y. Brane-World Dynamics in Einstein-Gauss-Bonnet Gravity. Phys. Rev. D 2007, 76, 104028, Erratum: Phys. Rev. D 2009, 80, 089902. [Google Scholar] [CrossRef]
- Charmousis, C. Higher order gravity theories and their black hole solutions. Lect. Notes Phys. 2009, 769, 299. [Google Scholar]
- Hendi, S.H.; Panah, B.E. Thermodynamics of rotating black branes in Gauss-Bonnet-nonlinear Maxwell gravity. Phys. Lett. B 2010, 684, 77. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Liu, Y.-W.; Izumi, K.; Chen, P. Tensor Perturbations from Brane-World Inflation with Curvature Effects. Phys. Rev. D 2014, 89, 063501. [Google Scholar] [CrossRef]
- Hendi, S.H.; Panahiyan, S.; Mahmoudi, E. Thermodynamic analysis of topological black holes in Gauss-Bonnet gravity with nonlinear source. Eur. Phys. J. C 2014, 74, 3079. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tanaka, T. Mapping the ghost free bigravity into braneworld setup. J. Cosmol. Astropart. Phys. 2014, 2014, 004. [Google Scholar] [CrossRef]
- Maselli, A.; Pani, P.; Gualtieri, L.; Ferrari, V. Rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity with finite coupling. Phys. Rev. D 2015, 92, 083014. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Wu, S.-F.; Yang, G.-H. Gauss-Bonnet correction to Holographic thermalization: Two-point functions, circular Wilson loops and entanglement entropy. Phys. Rev. D 2013, 88, 086006. [Google Scholar] [CrossRef]
- Zeng, X.-X.; Liu, X.-M.; Liu, W.-B. Holographic thermalization with a chemical potential in Gauss-Bonnet gravity. J. High Energy Phys. 2014, 2014, 31. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Wang, B.; Abdalla, E.; Papantonopoulos, E. Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary. Phys. Rev. D 2015, 91, 106010. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Chatzifotis, N.; Karakasis, T. Thermodynamics of black holes featuring primary scalar hair. Phys. Rev. D 2024, 110, L101502. [Google Scholar] [CrossRef]
- Baake, O.; Cisterna, A.; Hassaine, M.; Hernandez-Vera, U. Endowing black holes with beyond-Horndeski primary hair: An exact solution framework for scalarizing in every dimension. Phys. Rev. D 2024, 109, 064024. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Chatzifotis, N.; Nakas, T. Compact objects with primary hair in shift and parity symmetric beyond Horndeski gravities. Phys. Rev. D 2024, 110, 024044. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C. Dressing a Black Hole with a Time-Dependent Galileon. J. High Energy Phys. 2014, 2014, 106. [Google Scholar] [CrossRef]
- Mushtaq, F.; Tiecheng, X. Deflection angle of light in an black hole with primary scalar hair geometry. New Astron. 2024, 109, 102212. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. F(Q) Gravity with Gauss–Bonnet Corrections: From Early-Time Inflation to Late-Time Acceleration. Fortsch. Phys. 2024, 72, 2400113. [Google Scholar] [CrossRef]
- Nojiri, S.; Nashed, G.G.L. Hayward black hole in scalar-Einstein-Gauss-Bonnet gravity in four dimensions. Phys. Rev. D 2023, 108, 024014. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Multihorizons black hole solutions, photon sphere, and perihelion shift in weak ghost-free Gauss-Bonnet theory of gravity. Phys. Rev. D 2022, 106, 044024. [Google Scholar] [CrossRef]
- Jaime, L.G.; Patino, L.; Salgado, M. Robust approach to f(R) gravity. Phys. Rev. D 2011, 83, 024039. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Non-trivial black hole solutions in f(R) gravitational theory. Phys. Rev. D 2020, 102, 124022. [Google Scholar] [CrossRef]
- Ovalle, J.; Casadio, R.; Contreras, E.; Sotomayor, A. Hairy black holes by gravitational decoupling. Phys. Dark Univ. 2021, 31, 100744. [Google Scholar] [CrossRef]
- Misyura, M.; Rincon, A.; Vertogradov, V. Non-singular black hole by gravitational decoupling and some thermodynamic properties. Phys. Dark Univ. 2024, 46, 101717. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, F. Energy extraction via Comisso-Asenjo mechanism from rotating hairy black hole. Phys. Rev. D 2023, 108, 024039. [Google Scholar] [CrossRef]
- Ramos, A.; Arias, C.; Avalos, R.; Contreras, E. Geodesic motion around hairy black holes. Ann. Phys. 2021, 431, 168557. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Nashed, G.G.L. Extension of Hayward black hole in f(R) gravity coupled with a scalar field. Phys. Dark Univ. 2024, 44, 101462. [Google Scholar] [CrossRef]
- Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. On the Energy Issue for a Class of Modified Higher Order Gravity Black Hole Solutions. Phys. Rev. D 2011, 84, 023515. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, R.-J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C 2018, 78, 682. [Google Scholar] [CrossRef]
- Sheykhi, A. Higher-dimensional charged f(R) black holes. Phys. Rev. D 2012, 86, 024013. [Google Scholar] [CrossRef]
- Sheykhi, A. Thermodynamics of apparent horizon and modified Friedmann equations. Eur. Phys. J. C 2010, 69, 265. [Google Scholar] [CrossRef]
- Hendi, S.H.; Sheykhi, A.; Dehghani, M.H. Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity. Eur. Phys. J. C 2010, 70, 703. [Google Scholar] [CrossRef]
- Sheykhi, A.; Dehghani, M.H.; Hendi, S.H. Thermodynamic instability of charged dilaton black holes in AdS spaces. Phys. Rev. D 2010, 81, 084040. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Stability of the vacuum nonsingular black hole. Chaos Solitons Fractals 2003, 15, 841. [Google Scholar] [CrossRef]
- Myung, Y.S. Instability of rotating black hole in a limited form of f(R) gravity. Phys. Rev. D 2011, 84, 024048. [Google Scholar] [CrossRef]
- Myung, Y.S. Instability of a Kerr black hole in f(R) gravity. Phys. Rev. D 2013, 88, 104017. [Google Scholar] [CrossRef]
- Nouicer, K. Black holes thermodynamics to all order in the Planck length in extra dimensions. Class. Quant. Grav. 2007, 24, 5917. [Google Scholar] [CrossRef]
- Dymnikova, I.; Korpusik, M. Thermodynamics of Regular Cosmological Black Holes with the de Sitter Interior. Entropy 2011, 13, 1967. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 1999, 60, 064018. [Google Scholar] [CrossRef]
- Kim, W.; Kim, Y. Phase transition of quantum corrected Schwarzschild black hole. Phys. Lett. B 2012, 718, 687. [Google Scholar] [CrossRef]
- D’Inverno, R.A. Introducing Einstein’s Relativity; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Lohakare, S.V.; Niyogi, S.; Mishra, B. Cosmology in modified f (G) gravity: A late-time cosmic phenomena. Mon. Not. Roy. Astron. Soc. 2024, 535, 1136. [Google Scholar] [CrossRef]
- Lohakare, S.V.; Rathore, K.; Mishra, B. Observational constrained gravity cosmological model and the dynamical system analysis. Class. Quant. Grav. 2023, 40, 215009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nashed, G.G.L.; Eid, A. Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field. Symmetry 2025, 17, 1360. https://doi.org/10.3390/sym17081360
Nashed GGL, Eid A. Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field. Symmetry. 2025; 17(8):1360. https://doi.org/10.3390/sym17081360
Chicago/Turabian StyleNashed, G. G. L., and A. Eid. 2025. "Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field" Symmetry 17, no. 8: 1360. https://doi.org/10.3390/sym17081360
APA StyleNashed, G. G. L., & Eid, A. (2025). Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field. Symmetry, 17(8), 1360. https://doi.org/10.3390/sym17081360