X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials
Abstract
:1. Introduction
- (i).
- The Liouville transformation from the CSLE to the Schrödinger equation;
- (ii).
- The Darboux deformation of the corresponding Liouville potential;
- (iii).
- The reverse Liouville transformation from the Schrödinger equation to the new CSLE using the same change in variable at Step (i),
2. The q-RSs of the JRef CSLE with the Simple-Pole Density Function
3. Rational Rudjak–Zakhariev Transforms of JRef CSLE
4. Form-Invariance of Restr-HRef CSLE Under Two Sequential RZTs
- (i).
- ,
- (ii).
- ,
- (iii).
- ,
5. Pseudo-Wronskian Representation of X1-Jacobi DPSs
5.1. RRZTs of JS Solutions
5.2. X1-Jacobi DPSs Composed of Pseudo-Wronskians of Two Jacobi Polynomials
5.3. Bochner-Type ODEs in Heun Form
6. Energy Spectrum of ‘Prime’ SLEs Solved Under Dirichlet Boundary Conditions
6.1. X1-Jacobi OPS
6.2. Finite Orthogonal Subsequences of X1-Jacobi DPS
7. Liouville Potentials Shape-Invariant Under Second-Order RDCTs
8. Discussion
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ChExp | characteristic exponent |
CSLE | canonical Sturm–Liouville equation |
DBC | Dirichlet boundary condition |
DPS | differential polynomial system |
DCT | Darboux–Crum transformation |
Darboux–Crum transform | |
EOP | exceptional orthogonal polynomial |
ExpDiff | exponent difference |
JRef | Jacobi-reference |
JS | Jacobi-seed |
LC | limit circle |
LDT | Liouville-Darboux transformation |
LP | limit point |
ODE | ordinary differential equation |
OPS | orthogonal polynomial system |
PF | polynomial fraction |
PFS | principal Frobenius solution |
p-SLE | prime Sturm–Liouville equation |
h-PT | hyperbolic Pöschl–Teller |
q-RS | quasi-rational solution |
RCSLE | rational CSLE |
rational Darboux–Crum transform | |
RDCT | rational Darboux–Crum transformation |
rational Darboux transform | |
RDT | rational Darboux transformation |
restr-HRef | restrictive Heun-reference |
R-Jacobi | Romanovski–Jacobi |
R-Routh | Romanovski–Routh |
rational Rudjak–Zakharov transform | |
RRZT | rational Rudjak–Zakharov transformation |
RSLP | rational Sturm–Liouville problem |
Rudjak–Zakharov transform | |
RZT | Rudjak–Zakharov transformation |
SLE | Sturm–Liouville equation |
SLP | Sturm–Liouville problem |
t-PT | trigonometric Pöschl–Teller |
TF | transformation function |
TSI | translationally shape-invariant |
Appendix A. Rudjak–Zakhariev Transformation of Generic CSLE
Appendix B. Rectangular Polynomial Matrix with Finitely Many Rows and Infinitely Many Columns X-Orthogonal on Intervals [−1,+1] and [1,∞) Accordingly
Appendix C. Two Alternative Representations of the X1-Jacobi Polynomials
Appendix D. Intrinsic Interconnection Between D- and W-Eigenpolynomials
References
- Natanson, G. Double-step shape-invariance of radial Jacobi-reference potential and breakdown of conventional rules of supersymmetric quantum mechanics. Axioms 2024, 13, 273. [Google Scholar] [CrossRef]
- Natanzon, G.A. Study of the one-dimensional Schrödinger equation generated from the hypergeometric equation. Vestn. Leningr. Univ. 1971, 10, 22–28. (In Russian) [Google Scholar] [CrossRef]
- Gibbons, J.; Veselov, A.P. On the rational monodramy-free potentials with sextic growth. J. Math. Phys. 2009, 50, 013513. [Google Scholar] [CrossRef]
- Sleeman, B.D.; Kuznetsov, V.B. §31.2: Heun functions: Normal form of Heun equation. In The NIST Handbook of Mathematical Functions; Olver, F.W., Ed.; NIST: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Cooper, F.; Khare, A.; Sukhatme, U.P. Supersymmetry in Quantum Mechanics; World Scientific: Denver, CO, USA, 2001. [Google Scholar] [CrossRef]
- Pöschl, G.; Teller, F. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 1933, 83, 143–151. [Google Scholar] [CrossRef]
- Quesne, C. Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. J. Phys. A 2008, 41, 392001. [Google Scholar] [CrossRef]
- Quesne, C. Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics. SIGMA 2009, 5, 84. [Google Scholar] [CrossRef]
- Bagchi, B.; Quesne, C.; Roychoudhury, R. Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry. Pramana J. Phys. 2009, 73, 337–347. [Google Scholar] [CrossRef]
- Soltész, T.; Pethő, L.; Lévai, G. Unified supersymmetric description of shape-Invariant potentials within and beyond the Natanzon class. Symmetry 2024, 16, 174. [Google Scholar] [CrossRef]
- Natanson, G. Biorthogonal Differential Polynomial System Composed of X-Jacobi Polynomials from Different Sequences. 2018. Available online: www.researchgate.net/publication/322634977 (accessed on 22 January 2018). [CrossRef]
- Natanson, G. X1-Jacobi Differential Polynomial System Formed by Solutions of Heun Equation at Fixed Values of Accessory Parameter. 2018. Available online: www.researchgate.net/publication/327235393 (accessed on 16 November 2024). [CrossRef]
- Natanson, G. Two exceptional differential polynomial systems formed by Jacobi-seed Heun polynomials. 2019. Available online: www.researchgate.net/publication/336839244 (accessed on 30 October 2019). [CrossRef]
- Bochner, S. Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 1929, 29, 730–736. [Google Scholar] [CrossRef]
- Gȯmez-Ullate, D.; Kamran, N.; Milson, R. An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 2009, 359, 352–367. [Google Scholar] [CrossRef]
- Gȯmez-Ullate, D.; Kamran, N.; Milson, R. An extension of Bochner’s problem: Exceptional invariant subspaces. J. Approx. Theory 2010, 162, 987–1006. [Google Scholar] [CrossRef]
- Kwon, K.H.; Littlejohn, L.L. Classification of classical orthogonal polynomials. J. Korean Math. Soc. 1997, 34, 973–1008. [Google Scholar]
- Natanson, G. Use of Wronskians of Jacobi Polynomials with Common Complex Indexes for Constructing X-DPSs and Their Infinite and Finite Orthogonal Subsets. 2019. Available online: www.researchgate.net/publication/331638063 (accessed on 10 March 2019). [CrossRef]
- Everitt, W.N.; Littlejohn, L.L. Orthogonal polynomials and spectral theory: A survey. In Orthogonal Polynomials and Their Applications. IMACS Annals on Computing and Applied Mathematics; Brezinski, C., Gori, L., Ronveaux, A., Eds.; J.C. Baltzer: Basel, Switzerland, 1991; Volume 9, pp. 21–55. ISSN 1012-2435. [Google Scholar]
- Everitt, W.N.; Kwon, K.H.; Littlejohn, L.L.; Wellman, R. Orthogonal polynomial solutions of linear ordinary differential equations. J. Comp. Appl. Math. 2001, 133, 85–109. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: New York, NY, USA, 1978. [Google Scholar]
- Garcia-Ferrero, M.; Gomez-Ullate, D.; Milson, R. A Bochner type classification theorem for exceptional orthogonal polynomials. J. Math. Anal. Appl. 2019, 472, 584–626. [Google Scholar] [CrossRef]
- Garcia-Ferrero, M.; Gomez-Ullate, D.; Milson, R. Classification of exceptional Jacobi polynomials. arXiv 2024, arXiv:2409.02656v1. [Google Scholar] [CrossRef]
- Rudyak, B.V.; Zakhariev, B.N. New exactly solvable models for Schrödinger equation. Inverse Probl. 1987, 3, 125–133. [Google Scholar]
- Schnizer, W.A.; Leeb, H. Exactly solvable models for the Schrödinger equation from generalized Darboux transformations. J. Phys. A 1993, 26, 5145–5156. [Google Scholar] [CrossRef]
- Natanson, G. Single-source nets of algebraically-quantized reflective Liouville potentials on the line I. Almost-everywhere holomorphic solutions of rational canonical Sturm-Liouville equations with second-order poles. arXiv 2015, arXiv:1503.04798v2. [Google Scholar]
- Natanson, G. Gauss-seed nets of Sturm-Liouville problems with energy-independent characteristic exponents and related sequences of exceptional orthogonal polynomials I. Canonical Darboux transformations using almost-everywhere holomorphic factorization functions. arXiv 2013, arXiv:1305.7453v1. [Google Scholar]
- Natanson, G. Darboux-Crum Nets of Sturm-Liouville Problems Solvable by Quasi-Rational Functions I. General Theory. 2018. Available online: https://www.researchgate.net/publication/323831953 (accessed on 1 March 2018). [CrossRef]
- Gesztesy, F.; Simon, B.; Teschl, G. Zeros of the Wronskian and renormalized oscillation theory. Am. J. Math. 1996, 118, 571–594. [Google Scholar] [CrossRef]
- Romanovski, V.I. Sur quelques classes nouvelles de polynomes orthogonaux. CR Acad. Sci. 1929, 188, 1023–1025. [Google Scholar]
- Askey, R. An integral of Ramanujan and orthogonal polynomials. J. Indian Math. Soc. 1987, 51, 27–36. [Google Scholar]
- Lesky, P.A. Vervollstandigungderklassischen Orthogonalpolynomedurch Erganzungen zum Askey—Schema der hypergeometrischen orthogonalen Polynome. Ost. Ak. Wiss. 1995, 204, 151–166. [Google Scholar]
- Lesky, P.A. Endliche und unendliche Systeme von kontinuierlichen klassichen Othogonalpolynomen. Z. Angew. Math. Mech. 1996, 76, 181–184. [Google Scholar] [CrossRef]
- Chen, M.P.; Srivastava, H.M. Orthogonality relations and generating functions for Jacobi polynomials and related hypergeometric functions. Appl. Math. Comput. 1995, 68, 153–188. [Google Scholar] [CrossRef]
- Koepf, W.; Masjed-Jamei, M. A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it. Integral Transform. Spec. Funct. 2006, 17, 559–576. [Google Scholar] [CrossRef]
- Hetyei, G. Shifted Jacobi polynomials and Delannoy numbers. arXiv 2009, arXiv:0909.5512v2. [Google Scholar]
- Yadav, R.K.; Khare, A.; Mandal, B.P. The scattering amplitude for newly found exactly solvable potential. Ann. Phys. 2013, 331, 313–316. [Google Scholar] [CrossRef]
- Natanson, G. On quantization of Bagchi-Quesne-Roychoudhury potential by a finite X-orthogonal sequence of Heun eigenpolynomials. In Proceedings of the Analytic and Algebraic Methods in Physics XV, Prague, Czech Republic, 10–13 September 2018. [Google Scholar]
- Szego, G. Orthogonal Polynomials; American Mathematical Society: New York, NY, USA, 1959; p. 150. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Co.: New York, NY, USA, 1960. [Google Scholar]
- Odake, S.; Sasaki, R. Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 2009, 679, 414–417. [Google Scholar] [CrossRef]
- Natanson, G. Equivalence Relations for Darboux-Crum Transforms of Translationally Form-Invariant Sturm-Liouville Equations. 2021. Available online: www.researchgate.net/publication/353131294 (accessed on 9 August 2021). [CrossRef]
- Gómez-Ullate, D.; Grandati, Y.; Milson, R. Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and Jacobi polynomials. J. Phys. A 2018, 51, 345201. [Google Scholar] [CrossRef]
- Odake, S.; Sasaki, R. Krein-Adler transformations for shape-invariant potentials and pseudo virtual states. J. Phys. A 2013, 46, 245201. [Google Scholar] [CrossRef]
- Gȯmez-Ullate, D.; Kamran, N.; Milson, R. On orthogonal polynomials spanning a non-standard flag. Contemp. Math. 2012, 563, 51–71. [Google Scholar] [CrossRef]
- Gȯmez-Ullate, D.; Marcellan, F.; Milson, R. Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials. J. Math. Anal. Appl. 2013, 399, 480–495. [Google Scholar] [CrossRef]
- Natanson, G. Survey of nodeless regular almost-everywhere holomorphic solutions for Exactly solvable Gauss-reference Liouville potentials on the line I. Subsets of nodeless Jacobi-seed solutions co-existent with discrete energy spectrum. arXiv 2016, arXiv:1606.08758. [Google Scholar]
- Masjed-Jamei, M.; Moalemi, Z. A generic classification of exceptional orthogonal X1-polynomials based on Pearson distributions family. arXiv 2020, arXiv:2010.11586v1. [Google Scholar]
- Masjed-Jamei, M.; Moalemi, Z.; Saad, N. On all symmetric and nonsymmetric exceptional orthogonal X1-polynomials generated by a specific Sturm–Liouville problem. Mathematics 2022, 10, 2464. [Google Scholar] [CrossRef]
- Hildebrandt, E.H. Systems of polynomials connected with the Charlier expansions and the Pearson differential and difference equations. Ann. Math. Statist. 1931, 2, 379–439. [Google Scholar] [CrossRef]
- Routh, E.J. On some properties of certain solutions of a differential equation of second order. Proc. Lond. Math. Soc. 1884, 16, 245–261. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Characterization Theorems for Orthogonal Polynomials. In Orthogonal Polynomials; Nevai, P., Ed.; NATO ASI Series (Mathematical and Physical Sciences); Springer: Dordrecht, The Netherlands, 1990; Volume 294, pp. 1–24. [Google Scholar]
- Natanson, G. Rediscovery of Routh polynomials after hundred years in obscurity. In Recent Research in Polynomials; Özger, F., Ed.; IntechOpen: London, UK, 2023; 27p, Available online: https://www.intechopen.com/chapters/1118656 (accessed on 26 January 2023). [CrossRef]
- Liaw, C.; Littlejohn, L.L.; Stewart, J.; Wicks, Q. A spectral study of the second-order exceptional X1-Jacobi differential expression and a related non-classical Jacobi differential expression. J. Math. Anal. Appl. 2015, 422, 212–239. [Google Scholar] [CrossRef]
- Martínez-Finkelshtein, A.; Rakhmanov, E.A. On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials. Contemp. Math. 2010, 507, 209–232. [Google Scholar] [CrossRef]
- Takemura, K. Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A 2012, 45, 085211. [Google Scholar] [CrossRef]
- Natanson, G. Breakup of SUSY Quantum Mechanics in the Limit-Circle Region of the Darboux/Pöschl-Teller Potential. 2019. Available online: https://www.researchgate.net/publication/334960618 (accessed on 1 October 2019). [CrossRef]
- Nikiforov, A.F.; Uvarov, V.B. Special Functions of Mathematical Physics; Birkhäuser: Basel, Switzerland; Boston, MA, USA, 1988. [Google Scholar]
- Everitt, W.N. A Catalogue of Sturm-Liouville Differential Equations. In Sturm-Liouville Theory, Past and Present; Amrein, W.O., Hinz, A.M., Pearson, D.B., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2005; pp. 271–331. [Google Scholar] [CrossRef]
- Everitt, W.N. Note on the X1-Jacobi orthogonal polynomials. arXiv 2008, arXiv:0812.0728v1. [Google Scholar]
- Dimitrov, D.K.; Lun, Y.C. Monotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomials. J. Approx. Theory 2014, 181, 18–29. [Google Scholar] [CrossRef]
- Horvath, A.P. Asymptotics for recurrence coefficients of X1-Jacobi polynomials and Christoffel function. Integral Transform. Spec. Funct. 2020, 31, 87–106. [Google Scholar] [CrossRef]
- Alhaidari, A.D.; Assi, I.A. Finite-Series Approximation of the Bound States for Two Novel Potentials. Physics 2022, 4, 1067–1080. [Google Scholar] [CrossRef]
- Raposo, A.P.; Weber, H.J.; Alvarez-Castillo, D.E.; Kirchbach, M. Romanovski polynomials in selected physics prob-lems. Centr. Eur. J. Phys. 2007, 5, 253–284. [Google Scholar] [CrossRef]
- Weber, H.J. Connections between Romanovski and other polynomials. C. Eur. J. Math. 2007, 5, 581–595. [Google Scholar] [CrossRef]
- Avarez-Castillo, D.E.; Kirchbach, M. Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials. Rev. Mex. Fis. E 2007, 53, 143–154. [Google Scholar]
- Quesne, C. Extending Romanovski polynomials in quantum mechanics. J. Math. Phys. 2013, 54, 122103. [Google Scholar] [CrossRef]
- Martınez-Finkelshtein, A.; Silva Ribeiro, L.L.; Sri Ranga, A.; Tyaglov, M. Complementary Romanovski-Routh polynomials: From orthogonal polynomials on the unit circle to Coulomb wave functions. Proc. Am. Math. Soc. 2019, 147, 2625–2640. [Google Scholar] [CrossRef]
- Masjed-Jamei, M. Special Functions and Generalized Sturm-Liouville Problems, 1st ed.; Birkhäuser: Cham, Switzerland, 2020; pp. 21–23. [Google Scholar]
- Youssri, Y.H.; Zaky, M.A.; Hafezd, R.M. Romanovski-Jacobi spectral schemes for high-order differential equations. Appl. Numer. Math. 2023, 198, 148–159. [Google Scholar] [CrossRef]
- Das, S.; Swaminathan, A. Higher order derivatives of R-Jacobi polynomials. AIP Conf. Proc. 2016, 1739, 020058. [Google Scholar] [CrossRef]
- Masjedjamei, M. Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transform. Spec. Funct. 2002, 13, 169–190. [Google Scholar] [CrossRef]
- Abo-Gabal, H.; Zaky, M.A.; Hafez, R.M.; Doha, E.H. On Romanovski–Jacobi polynomials and their related approximation results. Numer. Methods Partial. Differ. Equ. 2020, 36, 1982–2017. [Google Scholar] [CrossRef]
- Erdelyi, A.; Bateman, H. Transcendental Functions; McGraw Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Yadav, R.K.; Khare, A.; Kumari, N.; Bagchi, B.; Mandal, P.M. Parametric symmetries in exactly solvable real and PT symmetric complex potentials. J. Math. Phys. 2016, 57, 062106. [Google Scholar] [CrossRef]
- Liaw, C.; Littlejohn, L.L.; Stewart, J. Spectral analysis for the exceptional Xm-Jacobi equation. Electr. J. Diff. Equ. 2015, 194, 1–10. [Google Scholar]
- Ho, C.-L.; Odake, S.; Sasaki, R. Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials. SIGMA 2011, 7, 107. [Google Scholar] [CrossRef]
- Yadav, R.K.; Banerjee, S.; Kumari, N.; Khare, A.A.; Mandal, B.P. One parameter family of rationally extended isospectral potentials. Ann. Phys. 2022, 436, 168679. [Google Scholar] [CrossRef]
- Yadav, R.K.; Khare, A.A.; Mandal, B.P. Supersymmetry and shape invariance of exceptional orthogonal polynomials. Ann. Phys. 2022, 444, 169064. [Google Scholar] [CrossRef]
- Andrianov, A.A.; Borisov, N.V.; Ioffe, M.V. The factorization method and quantum systems with equivalent energy spectra. Phys. Lett. 1984, 105, 19–22. [Google Scholar] [CrossRef]
- Sukumar, C.V. Supersymmetric quantum mechanics of one-dimensional system. J. Phys. A 1985, 18, 2917–2936. [Google Scholar] [CrossRef]
- Sukumar, C.V. Supersymmetric quantum mechanics and the inverse scattering method. J. Phys. A 1985, 18, 2937–2955. [Google Scholar] [CrossRef]
- Gangopadhyaya, A.; Panigrahi, P.K.; Sukhatme, U.P. Analysis of inverse-square potentials using supersymmetric quantum mechanics. J. Phys. A 1994, 27, 4295–4300. [Google Scholar] [CrossRef]
- Gangopadhyaya, A.; Mallow, J.V.; Rasinariu, C. Supersymmetric Quantum Mechanics. An Introduction; World Scientific Publishing: London, UK, 2011. [Google Scholar] [CrossRef]
- Yadav, R.K.; Khare, A.A.; Mandal, B.P. The scattering amplitude for one parameter family of shape invariant potentials related to Xm Jacobi polynomials. Phys. Lett. B 2013, 723, 433–435. [Google Scholar] [CrossRef]
- Weisstein, E.W. Jacobi Polynomials. MathWorld. 2018. Available online: https://en.wikipedia.org/wiki/Jacobi_Recurrence_relations (accessed on 15 July 2024).
- Abramowitz, A.; Stegun, I.A. Handbook of Mathematical Functions; Applied Mathematics—55; NBS: Washington, DC, USA, 1972. [Google Scholar]
- Karlin, S.; Szegő, G. On Certain Determinants Whose Elements Are Orthogonal Polynomials. J. Anal. Math. 1960, 8, 1–157. [Google Scholar] [CrossRef]
- Grandati, Y.; Bérard, A. Comments on the generalized SUSY QM partnership for Darboux- Pöschl-Teller potential and exceptional Jacobi polynomials. J. Eng. Math. 2013, 82, 161–171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natanson, G. X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials. Symmetry 2025, 17, 109. https://doi.org/10.3390/sym17010109
Natanson G. X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials. Symmetry. 2025; 17(1):109. https://doi.org/10.3390/sym17010109
Chicago/Turabian StyleNatanson, Gregory. 2025. "X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials" Symmetry 17, no. 1: 109. https://doi.org/10.3390/sym17010109
APA StyleNatanson, G. (2025). X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials. Symmetry, 17(1), 109. https://doi.org/10.3390/sym17010109