Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Darboux–Crum transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 518 KiB  
Article
Exceptional Differential Polynomial Systems Formed by Simple Pseudo-Wronskians of Jacobi Polynomials and Their Infinite and Finite X-Orthogonal Reductions
by Gregory Natanson
Mathematics 2025, 13(9), 1487; https://doi.org/10.3390/math13091487 - 30 Apr 2025
Viewed by 351
Abstract
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational [...] Read more.
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational canonical Sturm–Liouville equations (RCSLEs). It is shown that each RCSLE in question has four infinite sequences of quasi-rational solutions (q-RSs) such that their polynomial components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference (JRef) CSLE, used as the starting point, we formulate two rational Sturm–Liouville problems (RSLPs) by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’ SLE (p-SLE) at the ends of the intervals (−1, +1) or (+1, ∞). Finally, we demonstrate that the polynomial components of the q-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs composed of p Romanovski–Jacobi (R-Jacobi) polynomials with the same pair of indexes and a single classical Jacobi polynomial, or, accordingly, p classical Jacobi polynomials with the same pair of positive indexes and a single R-Jacobi polynomial. The common, fundamentally important feature of all the simple p-WPs involved is that they do not vanish at the finite singular endpoints—the main reason why they were selected for the current analysis in the first place. The discussion is accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by the aforementioned infinite and finite EOP sequences. Full article
(This article belongs to the Special Issue Polynomials: Theory and Applications, 2nd Edition)
47 pages, 810 KiB  
Article
X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials
by Gregory Natanson
Symmetry 2025, 17(1), 109; https://doi.org/10.3390/sym17010109 - 12 Jan 2025
Cited by 1 | Viewed by 1013
Abstract
This paper develops a new formalism to treat both infinite and finite exceptional orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial systems (DPSs). The new rational canonical Sturm–Liouville equations (RCSLEs) with quasi-rational solutions (q-RSs) were obtained by applying rational Rudjak–Zakhariev [...] Read more.
This paper develops a new formalism to treat both infinite and finite exceptional orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial systems (DPSs). The new rational canonical Sturm–Liouville equations (RCSLEs) with quasi-rational solutions (q-RSs) were obtained by applying rational Rudjak–Zakhariev transformations (RRZTs) to the Jacobi equation re-written in the canonical form. The presented analysis was focused on the RRZTs leading to the canonical form of the Heun equation. It was demonstrated that the latter equation preserves its form under the second-order Darboux–Crum transformation. The associated Sturm–Liouville problems (SLPs) were formulated for the so-called ‘prime’ SLEs solved under the Dirichlet boundary conditions (DBCs). It was proven that one of the two X1-Jacobi DPSs composed of Heun polynomials contains both the X1-Jacobi orthogonal polynomial system (OPS) and the finite EOP sequence composed of the pseudo-Wronskian transforms of Romanovski–Jacobi (R-Jacobi) polynomials, while the second analytically solvable Heun equation does not have the discrete energy spectrum. The quantum-mechanical realizations of the developed formalism were obtained by applying the Liouville transformation to each of the SLPs formulated in such a way. Full article
(This article belongs to the Section Physics)
26 pages, 5396 KiB  
Article
Double-Step Shape Invariance of Radial Jacobi-Reference Potential and Breakdown of Conventional Rules of Supersymmetric Quantum Mechanics
by Gregory Natanson
Axioms 2024, 13(4), 273; https://doi.org/10.3390/axioms13040273 - 19 Apr 2024
Cited by 1 | Viewed by 1210
Abstract
The paper reveals some remarkable form-invariance features of the ‘Jacobi-reference’ canonical Sturm–Liouville equation (CSLE) in the particular case of the density function with the simple pole at the origin. It is proven that the CSLE under consideration preserves its form under the two [...] Read more.
The paper reveals some remarkable form-invariance features of the ‘Jacobi-reference’ canonical Sturm–Liouville equation (CSLE) in the particular case of the density function with the simple pole at the origin. It is proven that the CSLE under consideration preserves its form under the two second-order Darboux–Crum transformations (DCTs) with the seed functions represented by specially chosen pairs of ‘basic’ quasi-rational solutions (q-RSs), i.e., such that their analytical continuations do not have zeros in the complex plane. It is proven that both transformations generally either increase or decrease by 2 the exponent difference (ExpDiff) for the mentioned pole while keeping two other parameters unchanged. The change is more complicated in the latter case if the ExpDiff for the pole of the original CSLE at the origin is smaller than 2. It was observed that the DCTs in question do not preserve bound energy levels according to the conventional supersymmetry (SUSY) rules. To understand this anomaly, we split the DCT in question into the two sequential Darboux deformations of the Liouville potentials associated with the CSLEs of our interest. We found that the first Darboux transformation turns the initial CSLE into the Heun equation written in the canonical form while the second transformation brings us back to the canonical form of the hypergeometric equation. It is shown that the first of these transformations necessarily places the mentioned ExpDiff into the limit-circle (LC) range and then the second transformation keeps the pole within the LC region, violating the conventional prescriptions of SUSY quantum mechanics. Full article
(This article belongs to the Special Issue Advances in Differential Geometry and Mathematical Physics)
38 pages, 3002 KiB  
Article
Uniqueness of Finite Exceptional Orthogonal Polynomial Sequences Composed of Wronskian Transforms of Romanovski-Routh Polynomials
by Gregory Natanson
Symmetry 2024, 16(3), 282; https://doi.org/10.3390/sym16030282 - 29 Feb 2024
Cited by 2 | Viewed by 1225
Abstract
This paper exploits two remarkable features of the translationally form-invariant (TFI) canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrödinger equation with the shape-invariant Gendenshtein (Scarf II) potential. First, the Darboux–Crum net of rationally extended Gendenshtein potentials can be specified by [...] Read more.
This paper exploits two remarkable features of the translationally form-invariant (TFI) canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrödinger equation with the shape-invariant Gendenshtein (Scarf II) potential. First, the Darboux–Crum net of rationally extended Gendenshtein potentials can be specified by a single series of Maya diagrams. Second, the exponent differences for the poles of the CSLE in the finite plane are energy-independent. The cornerstone of the presented analysis is the reformulation of the conventional supersymmetric (SUSY) quantum mechanics of exactly solvable rational potentials in terms of ‘generalized Darboux transformations’ of canonical Sturm–Liouville equations introduced by Rudyak and Zakhariev at the end of the last century. It has been proven by the author that the first feature assures that all the eigenfunctions of the TFI CSLE are expressible in terms of Wronskians of seed solutions of the same type, while the second feature makes it possible to represent each of the mentioned Wronskians as a weighted Wronskian of Routh polynomials. It is shown that the numerators of the polynomial fractions in question form the exceptional orthogonal polynomial (EOP) sequences composed of Wronskian transforms of the given finite set of Romanovski–Routh polynomials excluding their juxtaposed pairs, which have already been used as seed polynomials. Full article
16 pages, 726 KiB  
Article
Balanced Gain-and-Loss Optical Waveguides: Exact Solutions for Guided Modes in Susy-QM
by Sara Cruz y Cruz, Alejandro Romero-Osnaya and Oscar Rosas-Ortiz
Symmetry 2021, 13(9), 1583; https://doi.org/10.3390/sym13091583 - 27 Aug 2021
Cited by 6 | Viewed by 2539
Abstract
The construction of exactly solvable refractive indices allowing guided TE modes in optical waveguides is investigated within the formalism of Darboux–Crum transformations. We apply the finite-difference algorithm for higher-order supersymmetric quantum mechanics to obtain complex-valued refractive indices admitting all-real eigenvalues in their point [...] Read more.
The construction of exactly solvable refractive indices allowing guided TE modes in optical waveguides is investigated within the formalism of Darboux–Crum transformations. We apply the finite-difference algorithm for higher-order supersymmetric quantum mechanics to obtain complex-valued refractive indices admitting all-real eigenvalues in their point spectrum. The new refractive indices are such that their imaginary part gives zero if it is integrated over the entire domain of definition. This property, called condition of zero total area, ensures the conservation of optical power so the refractive index shows balanced gain and loss. Consequently, the complex-valued refractive indices reported in this work include but are not limited to the parity-time invariant case. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

Back to TopTop